MP468C - Computational Physics 2 - Lab 06

1. Plan a MCMC calculation for calculating the autocorrelation function for the magnetization

$$
R(t)=\left\langle M_{n} M_{n+t}\right\rangle-\left\langle M_{n}\right\rangle\left\langle M_{n+t}\right\rangle
$$

where the subscripts indicate Monte Carlo step number, or Monte Carlo 'time'.
Code your strategy, calculate $R(t)$, and plot it as a function of t.
You might want to first attack the 1D chain, to be able to test in reasonable time.
2. Consider the function

$$
F(w)=\sum_{j=1}^{20}[w H(j / 20)-G(j / 20)]^{2}
$$

with

$$
H(x)=x^{2} \quad \text { and } \quad G(x)=x^{3}+0.1 \sin (30 x) .
$$

The function $F(w)$ is known to have a minimum between $w=-5$ and $w=+7$. Find this minimum using the method of golden sections.
3. Consider the one-dimensional ferromagnetic $X Y$ model. The 'spins' can now point in any direction within the $x-y$ plane. The state of each spin is described by the angle $\theta_{i} \in[0,2 \pi)$ made with the x-axis.

$$
H=-\sum_{i} \cos \left(\theta_{i}-\theta_{i+1}\right)-B \sum_{i} \cos \left(\theta_{i}\right)
$$

There are L spins arranged linearly. You can use periodic or open boundary conditions, whichever you find easer - but make sure you treat the boundary spins correctly.

We want to generate a Markov chain. Previously (for Ising lattices), proposing moves involved flipping a spin, chosen at random. We can do something similar here, but what does 'flipping' a spin mean? θ_{i} has a continium of values $\in[0,2 \pi)$, not just two possible values. So, instead of flipping, I suggest proposing a new value of θ_{i} chosen uniform-randomly $\in[0,2 \pi)$.
Write a function that generates a Markov chain, using the Metropolis algorithm.

Crucial hint: first work out on paper what your accept/reject criterion is. Do you need to calculate the total energies of the current state and proposed state?

Let's use this first for temperature $T=2$ (i.e., $\beta=1 / 2$) and zero field, $B=0$.
You could first use a lattice (chain) size $L=50$. Increase this later if you can.
(a) The magnetization now has x and y components!

$$
M_{x}=\frac{1}{L} \sum_{i} \cos \theta_{i}, \quad M_{y}=\frac{1}{L} \sum_{i} \sin \theta_{i} .
$$

Draw history graphs for M_{x}, M_{y} and $M=\sqrt{M_{x}^{2}+M_{y}^{2}}$.
(b) Plot the magnitude of the magnetization M as a function of temperature, for fixed $B=0$.
(c) Plot the magnitude of the magnetization M as a function of field B, for fixed $T=2$.

