Computational Physics 2

Administrative

Lecturer: me

Lectures: Thursdays 12noon - 1pm
Labs: Thursdays 2pm - 4pm

Mark distribution: Cont.assessment

(= quizes + assignments) — 30%
Exam — 70%

MP468P Project: (dual-department students) Oct—May

Overview of lecture slides 00

@ Content/overview of module

© The unix/linux command line

© Programming language(s) — choice of python
@ Changing landscape of computational physics
© Things not covered

@ The practice of scientific computing

@ You should...

Computational Physics 2: Content

Module topics

@ Random numbers and stochastic processes

@ Monte Carlo methods

Linear algebra
(Linear sets of equations, matrix decompositions, eigenvalues)

Minimisation / Optimisation

o Partial differential equations (PDEs)
+ ODE boundary value problems

@ “Soft skills”: unix/linux command-line, python

Computational Physics 2: Specialties

This module is a bit different...

Math (linear algebra, PDE's)
@ Components of Statistics (random processes, probability)
Computer Science (Algorithms)

e ‘Lab’ work
@ May turn out to be the most useful subject for your future

The most ‘modern’ module.

(Numerics with python — less than 20 years old)

@ Some aspects will become outdated in a few years.
(Programming tools, workflow, etc. Not the principles.)

The command line

Why unix systems, why command line?

@ Serious computing generally done on unix/linux machines

@ Serious computing usually done remotely on multiple machines/cores
at high-performance computing facilities
(e.g., ICHEC in Ireland)

wherever you have access to multiple cpu's or gpu's
Difficult to work remotely without command-line knowledge!

The command line

Common commands

e Basic: Is, cd, cp, mv, rm, mkdir, less, grep, diff, cat, top, ps, kill

@ Slightly less basic:
ssh, find, awk, tar, sort, gzip, unzip, chmod, chown, tail, head

Combinations
@ Piping the results of one command (program) into another:
Is | sort -r Is -l | sort -g -k 5 cat *.tex | grep -i perturbative

@ Redirection: output of one command sent to a file:
cat filel.txt file2.txt > outfile.txt

Computer languages other than python

Should you learn other programming languages?

C? julia? Fortran? Mathematica? matlab/octave? maple?
SageMath? R? html? java? javascript? C++? Go?
lisp? php? perl? bash? awk & sed? Ruby? C#7?

Pascal? COBOL? Basic? Assembly language? POV-Ray?

Computer languages

Low-level vs High-level

@ Low-level — closer to machine;
programmer implements many details;
speed and control at the expense of programmer time.

@ High-level — closer to human; ~ scripting languages
programmer uses libraries; pre-defined data structures

o Nowadays, low-level ~ compiled; high-level ~ interpreted.

Low-level languages:

(low to high) High-level languages:

. python / julia / matlab
Machine language Mathematica / Maple

Assembly language
C / Fortran awk / bash / perl

Using python for computational physics

Python: the best programming language ever (?)

o Widely used — lots of information easily available

@ Easy to learn
interpreted not compiled, don't have to worry about variable types

Libraries available for many common (and specialized) tasks.
Most relevant for us: numpy, scipy, matplotlib

@ Speed does not matter nowadays for many tasks.

Many tasks done by external, non-python libraries.
Example: matrix eigensolvers call ‘lapack’ library.

Counting starts at 0 instead of 1, like a proper computer language.

Using python for computational physics

Python: a terrible choice of programming language

Widely used — lots of junk information and incompetent users

Slow. Very, very slow. Crawling slow.
interpreted not compiled

Sometimes speed actually matters.

E.g., Monte Carlo calculations.
To speed up critical parts of your code, you might have to write those
parts in C/Fortran. — two-language problem

Designed originally for computer people, not for physicists or for
numerical work. We are secondary citizens in the python world.
Sometimes this shows :-(

Counting starts at 0 instead of 1, an insult to people who deal with
matrices and vectors.

Alternatives to python

Matlab/octave

@ Pros: Designed for numerical work. Just-In-Time compiler makes
matlab faster than python. Octave freely available. Packages less
chaotic than for python.

o Cons: Matlab needs expensive license. Octave slower.
Not a proper programming language.

C/ C++
@ Pros: Fast if coded correctly.

e Cons: Have to learn a (much) more complicated language than
python. Compilation necessary — development cycle slower.
Memory allocations by hand. Not as many convenient predefined data
structures. Using libraries is a more involved process.

Alternatives to python, continued

Fortran

@ Pros: Designed explicitly for numerical work. Fast if coded correctly.

@ Cons: Compilation cycle. Not used much outside numerics.

julia
@ Pros: Designed explicitly for numerical work.

Aims to solve the two-language problem — aims to be fast to develop
and fast to run. Aims to overcome deficits of python.

e Cons: Still new, and changing/growing.
E.g., libraries currently even more chaotic than python.

Alternatives to python, continued further

Mathematica/ Maple
@ Pros: Combination of numerical and symbolic capabilities.

@ Cons: Not free or open-source. Expensive license.
Not general-purpose programming languages.

R
@ Pros: Great for statistics. Great graphics package.

@ Cons: Slow. Not as suitable for non-statistical tasks.

Changing landscape of computational physics

Algorithms and principles
@ Mostly stable, but some things change

o Example: gradient descent

Changing landscape...

Programming practices (and fashions)
@ Rapid change — be warned (and be prepared)

@ python was considered unacceptably slow for numerics, until ~2005.

double precision was considered unacceptably slow for numerics.

integer division, different in python2 and python3.
@ GPU usage increasingly unavoidable. :-(

@ For scientific usage, python might be replaced by julia soon(ish).

Things not covered in MP468C

@ Many, many aspects of numerical analysis!!
Graph algorithms, advanced data structures, adaptive numerical integration,
extrapolation, finite element methods,

@ Serious applications of computers in physics
Quantum Monte Carlo, molecular dynamics, density functional theory,....

@ Statistical data analysis, Machine learning
o Parallel computing

e GPU computing

o Cloud computing

e Other programming languages/paradigms: Matlab/octave,
mathematica, julia, C, ...

@ Many python features: objects/classes, sympy, making packages,...

The practice of computational physics

Do’s and dont’s

@ Don't guess what a command/package does. Look it up.
E.g., If you use np.arange(2,10), first read its doc.

@ Looking up documentation: use reliable sources.

@ Start coding first, think later?

Please please please don't!!!

o First calculate by hand (on paper) whatever is needed.
When possible: write out what you need to code as pesudocode or as
an algorithm.

Practice — writing out algorithms

Example (from wikipedia page on Metropolis-Hastings)

1. Initialise

1. Pick an initial state .
2.Sett = 0.
2. lterate

1. Generate a random candidate state 2’ according to g(z' | ;).
P(z') g(a | m'))
P(z.) (e | @)

2. Calculate the acceptance probability A(z’, ;) = min (1,

3. Accept or reject:
1. generate a uniform random number « € [0, 1];
2.ifu < A(z',z;), then accept the new state and set z;41 = z’;
3.ifu > A(z', z;), then reject the new state, and copy the old state forward
Tyl = Ty
4. Increment. sett =t + 1.

Writing out algorithms

Example from Higham, Accuracy & Stability of Numerical Algorithms

% Choose a starting vector z.
Power method while not converged
for finding eigenvalues z:= Az
z = z/[z 0
end

Writing out algorithms

Another example from Higham, Accuracy & Stability...

Computing the
QR decomposition
of an n x n matrix A, using a
Gram-Schmidt-like method.

asel) =a, k=Ln
fork=1:n
k
ik = [la”
@ =ag [Tkk
forj=k+1n
Tks = q;{la;k)
a;_k+1) _ a§k)
end
end

— Tkjdk

Writing out algorithms

Example from Kreyszig, Advanced Engineering Mathematics

ALGORITHM RUNGE-KUTTA (f, X0, yor h, N).

This algorithm computes the solution of the initial value problem y' = f(x, y), y(xo) = Yo
at equidistant points

) x1=x0 + h,xg = x9 + 2h,-+-,xNy = xo + Nh;

here f is such that this problem has a unique solution on the interval [xo, xy] (see Sec. 1.7).

INPUT: Function f, initial values X, yo, step size i, number of steps N
OUTPUT: Approximation y,,,; to the solution y(x,,.1) at x,41 = xo + (n + 1),
wheren = 0,1,--+,N — 1
Forn=20,1,---,N — 1 do:
k1 = hf(en, yn)
ko = hf(en + Sh, vy + 3k1)
ks = WfCen + Bhyn + k)
ka = hf(xn + h,yn + k3)
Bl = o r L0
Yuer = yu + §lky + 2z + 2 + ka)
OUTPUT Xy 11, Ynt1
End
Stop
End RUNGE-KUTTA

Writing out algorithms
Another example from Kreyszig, Adv. Eng. Math.

Table 20.2 Gauss—Seidel Iteration

ALGORITHM GAUSS-SEIDEL (A, b, X, €, N)
This algorithm computes a solution x of the system Ax = b given an initial approximation

x©, where A = [aji] is an n X n matrix with a;; # 0,j = 1, -~ -, n.
INPUT: A, b, initial approximation x©, tolerance € > 0, maximum number
of iterations N
OUTPUT: Approximate solution x™ = [x;"”] or failure message that ™ does
not satisfy the tolerance condition
Form=0,---,N— 1, do:
Forj=1,---,n,do:
i _ 1 5 1 <
m+1) _ an+1) am)
1 2] T @ (bJ - E [CT 2 a]kka)
& == k=j+1
End
2 If max [x§™*P — x{™| < € |x§™*P| then OUTPUT x™*. Stop
a i

[Procedure completed successfully]

End
OUTPUT: “No solution satisfying the tolerance condition obtained after N
iteration steps.” Stop
[Procedure completed unsuccessfully]
End GAUSS-SEIDEL

How you can help (yourself and me)

Would help if you...

@ Keep learning python and numpy intricacies —
read sections of the official documentation

(or a good book) as bedtime reading

o Install a linux/unix shell (a bash shell) on your own machine.

	Content/overview of module
	The unix/linux command line
	Programming language(s) — choice of python
	Changing landscape of computational physics
	Things not covered
	The practice of scientific computing
	You should...

