
Computational Physics 2

Administrative

Lecturer: me

Lectures: Thursdays 12noon - 1pm
Labs: Thursdays 2pm - 4pm

Mark distribution: Cont.assessment
(= quizes + assignments) −→ 30%
Exam −→ 70%

MP468P Project: (dual-department students) Oct–May

Overview of lecture slides 00

1 Content/overview of module

2 The unix/linux command line

3 Programming language(s) — choice of python

4 Changing landscape of computational physics

5 Things not covered

6 The practice of scientific computing

7 You should...

Computational Physics 2: Content

Module topics

Random numbers and stochastic processes

Monte Carlo methods

Linear algebra
(Linear sets of equations, matrix decompositions, eigenvalues)

Minimisation / Optimisation

Partial differential equations (PDEs)
+ ODE boundary value problems

“Soft skills”: unix/linux command-line, python

Computational Physics 2: Specialties

This module is a bit different...

Components of

{
Math (linear algebra, PDE’s)
Statistics (random processes, probability)
Computer Science (Algorithms)

‘Lab’ work

May turn out to be the most useful subject for your future

The most ‘modern’ module.
(Numerics with python — less than 20 years old)

Some aspects will become outdated in a few years.
(Programming tools, workflow, etc. Not the principles.)

The command line

Why unix systems, why command line?

Serious computing generally done on unix/linux machines

Serious computing usually done remotely on multiple machines/cores

I at high-performance computing facilities
(e.g., ICHEC in Ireland)

I wherever you have access to multiple cpu’s or gpu’s
I Difficult to work remotely without command-line knowledge!

The command line

Common commands

Basic: ls, cd, cp, mv, rm, mkdir, less, grep, diff, cat, top, ps, kill

Slightly less basic:
ssh, find, awk, tar, sort, gzip, unzip, chmod, chown, tail, head

Combinations

Piping the results of one command (program) into another:
ls | sort -r ls -l | sort -g -k 5 cat *.tex | grep -i perturbative

Redirection: output of one command sent to a file:
cat file1.txt file2.txt > outfile.txt

Computer languages other than python

Should you learn other programming languages?

C? julia? Fortran? Mathematica? matlab/octave? maple?

SageMath? R? html? java? javascript? C++? Go?

lisp? php? perl? bash? awk & sed? Ruby? C#?

Pascal? COBOL? Basic? Assembly language? POV-Ray?

Computer languages

Low-level vs High-level

Low-level → closer to machine;
programmer implements many details;
speed and control at the expense of programmer time.

High-level → closer to human; ≈ scripting languages
programmer uses libraries; pre-defined data structures

Nowadays, low-level ≈ compiled; high-level ≈ interpreted.

Low-level languages:
(low to high)

Machine language
Assembly language
C / Fortran

High-level languages:

python / julia / matlab
Mathematica / Maple
awk / bash / perl

Using python for computational physics

Python: the best programming language ever (?)

Widely used — lots of information easily available

Easy to learn
interpreted not compiled, don’t have to worry about variable types

Libraries available for many common (and specialized) tasks.
I Most relevant for us: numpy, scipy, matplotlib

Speed does not matter nowadays for many tasks.
I Many tasks done by external, non-python libraries.

Example: matrix eigensolvers call ‘lapack’ library.

Counting starts at 0 instead of 1, like a proper computer language.

Using python for computational physics

Python: a terrible choice of programming language

Widely used — lots of junk information and incompetent users

Slow. Very, very slow. Crawling slow.
interpreted not compiled

Sometimes speed actually matters.

I E.g., Monte Carlo calculations.
I To speed up critical parts of your code, you might have to write those

parts in C/Fortran. −→ two-language problem

Designed originally for computer people, not for physicists or for
numerical work. We are secondary citizens in the python world.
Sometimes this shows :-(

Counting starts at 0 instead of 1, an insult to people who deal with
matrices and vectors.

Alternatives to python

Matlab/octave

Pros: Designed for numerical work. Just-In-Time compiler makes
matlab faster than python. Octave freely available. Packages less
chaotic than for python.

Cons: Matlab needs expensive license. Octave slower.
Not a proper programming language.

C/ C++

Pros: Fast if coded correctly.

Cons: Have to learn a (much) more complicated language than
python. Compilation necessary — development cycle slower.
Memory allocations by hand. Not as many convenient predefined data
structures. Using libraries is a more involved process.

Alternatives to python, continued

Fortran

Pros: Designed explicitly for numerical work. Fast if coded correctly.

Cons: Compilation cycle. Not used much outside numerics.

julia

Pros: Designed explicitly for numerical work.
Aims to solve the two-language problem — aims to be fast to develop
and fast to run. Aims to overcome deficits of python.

Cons: Still new, and changing/growing.
E.g., libraries currently even more chaotic than python.

Alternatives to python, continued further

Mathematica/ Maple

Pros: Combination of numerical and symbolic capabilities.

Cons: Not free or open-source. Expensive license.
Not general-purpose programming languages.

R

Pros: Great for statistics. Great graphics package.

Cons: Slow. Not as suitable for non-statistical tasks.

Changing landscape of computational physics

Algorithms and principles

Mostly stable, but some things change

Example: gradient descent

Changing landscape...

Programming practices (and fashions)

Rapid change — be warned (and be prepared)

python was considered unacceptably slow for numerics, until ∼2005.

double precision was considered unacceptably slow for numerics.

integer division, different in python2 and python3.

GPU usage increasingly unavoidable. :-(

For scientific usage, python might be replaced by julia soon(ish).

Things not covered in MP468C

Many, many aspects of numerical analysis!!
Graph algorithms, advanced data structures, adaptive numerical integration,

extrapolation, finite element methods,

Serious applications of computers in physics
Quantum Monte Carlo, molecular dynamics, density functional theory,....

Statistical data analysis, Machine learning

Parallel computing

GPU computing

Cloud computing

Other programming languages/paradigms: Matlab/octave,
mathematica, julia, C, ...

Many python features: objects/classes, sympy, making packages,...

The practice of computational physics

Do’s and dont’s

Don’t guess what a command/package does. Look it up.
E.g., If you use np.arange(2,10), first read its doc.

Looking up documentation: use reliable sources.

Start coding first, think later?

Please please please don’t!!!

First calculate by hand (on paper) whatever is needed.
When possible: write out what you need to code as pesudocode or as
an algorithm.

Practice — writing out algorithms

Example (from wikipedia page on Metropolis-Hastings)

Writing out algorithms

Example from Higham, Accuracy & Stability of Numerical Algorithms

Power method
for finding eigenvalues

� � � � � � � � � � 	
 � �
 �
 � � � � � � � � � � � � � � � � � �
� � �
! � "

$ %
& ' () * + , * # & � -
. � / 0 1 2 3 4 5 6 7 8 9 : ; 4 8 < = 5 > ? @ A B
� & C D

. & � E � F G & # F H & H F I & J K L &MNO P Q R S T U V U W X Y Z [\] X X ^ _ ` a b c d e f g e h i j k l m g i n j o _ p q \ r s t u W v Z w [_ x y Z [z _ { | } ~ X � _ � X �� � { X � [� X � { � [� � { � � � � X] � � �
� Q ¡ � ¢ S � � � £ � � ¤ S ¥ � ¦� §Q ¨© ª �« ¬­ ®¯ � ° ± ² � ³ ´ µS � ¶

· ¸ S � � ¹ º » ¼ � ½ � ¾ ¿ � À Á Â ª � Ã � � Ä Å Q Æ Ç S S È � S É Ê Ë Ä S � Â Ì Í � S ¼ Î Ï � Ð Ñ Ì Ä Ò Ó Ð � � ¼Ô � � ¶ S Õ Ö Á S Ô � × � � � S Ð È � S £ � × � � � Ø � � S Ö � Ù S Ú Û � Ô Ð Ü Ô � S × � S Ô � S £ � � Ý Þ ß � � � Ô � ¸ S Û � à � �Ï � � ¿ � Ð £ � � Ê � Ý á S ¼ � � � â ã � ä Û å S � æ ç è � é ê Ì Á ë � ì º � � S í îï � � Ò ð ¶ S ¥ � ¿ S Ï � � � ñ �

ò
ó ô õ ö ÷ U ø ù U ú

ûü ýþ ÿ � � � ù � � � ÷ � � �ÿ ù � � � � � � ù 	 �
 ¿
 � � � �
 S ä � S ë � � Ä S Ò ù � ÷ � � � � � � Ó Ð � � � � � � £ � � � S � � � � é ¸ S Ð Ü � Á é � Ò � � � � � � ¶ � �S � � S � � � � � Ý � � � � ß � � � � � º ¥ S Ò Û � � Ð
 � � � � � � � S S � � S Ô � Ä S ! S º � � " # $ S � % S & � ' � (�) �
* � S Ò � + � Ü Ô � � S £ � � ¥ , � ¥ � � S Û � S ¥ - S � � � ¶ � ¿ S � . / Q � Û Ý � Ô Ö / � Û Ì S 0 � ¿ S 1 S ¥ � Ê S Ö * � º 2 Q Ò Û º 3Ð Ä � S Ð � � � � S ¼ 4 � Û 5 � � Ð S � 6 � �
 ¬ Ô ë � � � Ð
 î £ � 4 2 7 � � � Ø � 8 S Ð S Ò 2 9 � S Ð Ð � : ; î � � � � S
 ¬ � S � � � < Ä =S / § � S ë � � > � º ? @ Ý A B C S � S º D � S ë à S £ + ¥ E � Ä * > � S � � : ? Ä F � * 2 � � � ð ë G H I J K � L * 8 SM ¥ Ò � N À S ? O Ý � ¶ Ñ � S � � � � � � ¥ � � ¸ S P S â S Ô � � � Ø � ¥ Q S � � � R S T � Ô Ð à S � 6 � @ � � U S � V WX é S Ý Ã � Ü � Y Ã � � � Ð � Û Û ¥ � Z � â � � ä � ë é � � � S Ð � Ï [\ � � � � ; U á � Ô ? Ã] � I � S S ^ _ Ì � ë � � � � ë
 A Ò` � � ` é � S : ê � Ý a ¬ ü b c � ` 6 S Ú é � Ý � ¶ � d Ã � � Ì ½ Ü e 6 f g h � � � ä ë � ? � i j k
 � � � â S � Á � QI ¿ � l m Û Ñ é S ¥ n é Ä o Ì » � Ý p q � * � r s t ª u � º � é Ü � » ? S v w 6 Ã � x � Ô t ª ' � � Ð é � S¶ � â i Ó � � ; | á � Ô ¤ o Ä S Ó ¶ � / y � � Ô � � � é � � � Ø r s z ª � Ý � � S { � � � Ð ê Û O Ý � | � â ê é
 A � ë � � �é � } ~ � � ª � I � S Ò é Ã v ä e á � � � � � Ý � � � � � � � � � � Ô é Ã ä � � Ô � ë � ~ Ý � � * ¿ � Ä � � � � ë » � � � : /? � Ô S Ô é � Â é � S Ð � � 7 ë � � � S × � � e � S � ` � ¥ � Â ª � t ª U � ¿ 2 � � � � â � � � S ë � � � � Ò ¥ � ? Ü � E

� � � �
�

�

Writing out algorithms

Another example from Higham, Accuracy & Stability...

Computing the
QR decomposition

of an n×n matrix A, using a
Gram-Schmidt-like method.

� � � � � � � � � 	
 � � � �
 	 �

�
!

" # $ % � � & ' () � � * + , -
. � / / � � 0 � 1 � # � � � & $ 2 3 4 � # � 5 6

5 6 � 7 8 9 # � � :
;

< � � # 8 = � > ? � � @ � # � 5 " � A B � � � � � � � 6 C � D E 5 < � F G H I 5 5 6 H J K
L M �

� 5 @ 2 N # � " O � � � # � P Q R $ S
>

6 M T = U � � � 5 V � � W � 5 X � 5 = 5 6 � Y M Z � " � = � � [\] -
^ _ ` a I b

c
d % � � � �

$ 5 " e f � " � � g � h � � $ e ' G @ � # � & ' i j � h k c

l m n o p q
r

s t u v w x v y ($ 5 " � z R " � � � $ { h � � $ e " | } ~ �
�

U � 6 � � � � � � 5 � � � � � � # � � �
� � = 5 � e # � $ � � $ 2 3 # � � � � � � � � � � # 5 � e Z � # � 5 � � �� � � � � � � � � �

~
� � � � � 6 " �

�
�

� � � � ¡ 9 � � j � h $ � ¢ � 5 " £

¤ ¥
¦

§ ¨ © ª ¤ « ¬ ­ ®¯ ° >� �
± 5 � ­ ² ª ° c! �

³ « ¦ ´ µ ¶ · , ¦
¸ ¦ ¨

¹ º »

] « ¼½ , «
¾ « ¿

À Á ¦ Â
� 5 � :

Ã ÄÅ ­ Æ Ç È É �

Á « -
Ê ËÌ]

Í
« , ¾ Î ¦ ¨

, Ï ¦ Ð Ñ Ò Ó ¤
-

¾ ¦ Ô Á ¦ J «. Õ Ö × Ø- -
� � D

R 6 "

Ù Ú Û s �� Ü � � Ý Þ 5 / I !
ß # � à � 5 � G � 6 5 # M T = # � � # # � � V R � � � # � 5 " e á � W % 6 � � â ã � # � % % � # � %) � h � � D ä å h

$ � < � 5 æ ç � è � � z � à # e � 9 � % 5 � " % � e 6 � � M � é # � � � � � � ê � � # ë 5 � � � � % / � � � 5 � $ � D ì í e � � � �
$ 5 " e z � D $ % # � 5 " � � � � � � $ î 6 e � = U � � 9 5 � e ç ê / D � # � " 5 � � � 5 6 � � � � � # � 2

~
� � 9 � � D 5 �

� � U e 6 = � � � M 9 I 3 2 D � ¢ � E " 5 6 � � 5 = � 9 � � � 5 6 5 6 � � ¢ � 2 � ï � e à
ð

E 2 ñ � � 7 � $ 8 # # � � 5 � # � %
� � ' � � � � � é ò

ó
� é # � % 5 2 % � 8 #

!
5 � � � � � 2 � � � 5 � $ � ' � � � � 5 � D ô � � D @ 5 � � � � ê � e � � � ¡ e 6 z � e # �

2 Q õ e � ö
!

5 6 � 5 � ÷ 3 9 � # � 5 6 ø # � 5 D e ù � � � 6 ¢ ú B û < $ 8 ü � � $ � 9 M � ý � 7 � þ ÿ
c

U � � � 6 ¢ } ± 5 � $ 3 � � � 5 �
Á « -

. � � � û I � � ì � 6 G é � � Y � � � � ý @ % # � 5 " � Á « � � Ì]
Í
« , -

. � � � e � � � � U 5 � � � � # � � 5 V
	

= e 6 ý
U � � # 5 Q ¤ -

Ê
 � � � W � H e 6 # � � $ 5 D e z � ' $ � # � 5 " ¤ -
Ê 1 ç � � 2 Y � � � " M 6 9 � M I ± 5 � @ 3 � 8 B 7 # � �

2 � # ò
É

� Y � 7 5 � 9 � 5 = 5 � � �
ð

Z � " U õ # 5 � , -
¾ Ö Â ¨ í
 6 5 # � � � � � 7 # 5 U

�
� � � � � " M � � � % � � � B % # � � � �

� � # � 5 � � � @ � � � � @ e D # � � � � 5 D I � � U e � � % � � � ç � � 9 � ü 1 5 T � 5 � � 6 5 � # � 5 = 5 � � � � � 5 � �
� � 9

~
5 6 ì�

� � � � W 5 B � � $ � � ! � �
? � � j � h 2 � 5 � � � � � � 6 B � � 2 V � � I % ! � 6 � � � � " ~

� � # $ ¡ " � f % �
6 & ' « (�) J * + ì , É - J « . / O , ¾0 « 1 2 � 3 ó 4 , � ¾ 5 ¿ 6 � j 7 � 9 � 8 6 ç 8 5 � $ à ' 9 : ; � 1 � # 5 � � Ð 9 �� � B ¡ 9 é �

� � < 3 � 6 � � & � # � � [= 5 � $ � #
>

5 � � � 0 ?@ � « Ð A B « C � é � � � � « e � � þ 3 � � # � # � � e " � 6 # � � D � E
� % 2 �

c
� F � � ­ G � � 5 � G � � � � � e # � H � � � � e # � � � � z 6 ý B I J 5 � % g 2 K � L � = � MN O � � "

­ PÕ � Q

R
� S S T

U' V WX Y] /] » , Z ¾ V ¨ , [¥ V ¨ \ �] ^ J _] » J V ¤ ` ¾ a ¨ b SS S c S S � Ì d e f g É
Á h V Á h eS S S °i � j � Ì k � l m � n � * ~o � � 7 � � $ p � � � q ì

æ F $ � # � 5 " � 2 � 5 æ 3 � � � % 2 � e � e � � ¡ r 3 � s e t � < � � u 5 3 à � � 5 Y " � � A "7 � U � � � @ � # � 5 ' � v � �
c

� � � 5 K " � � � � 8 � 9 5 � � D ± 5 � $ � w a � � # a E � � � $ � 6 % z # x ë � � � � # � 5
� 9 � � � 5 � y

m
� W � þ 3 e � � " < 5 ± 5 � $ � z e #

{
� � � � 5 � � � | 6 � } I ~ $ � � F 3 I � 9 � � � � e � 6 5 # � e 6 = 1 ��

� % � � # � 5 " � � 5 � 5 � � � # é � � 5 $ / û # � " � # 5 B � 5 � 9 � 5 6 5 � $ 8 � e � 9 � � ± � � % 5 � V 5 ê � " 5 � ó

Writing out algorithms

Example from Kreyszig, Advanced Engineering Mathematics

SEC. 21.1 Methods for First-Order ODEs 905

call briefly the Runge–Kutta method.1 It is shown in Table 21.3. We see that in each

step we first compute four auxiliary quantities and then the new value

The method is well suited to the computer because it needs no special starting procedure,

makes light demand on storage, and repeatedly uses the same straightforward compu-

tational procedure. It is numerically stable.

Note that, if f depends only on x, this method reduces to Simpson’s rule of integration

(Sec. 19.5). Note further that depend on n and generally change from step

to step.

k1, Á , k4

yn�1.k1, k2, k3, k4

Table 21.3 Classical Runge–Kutta Method of Fourth Order

ALGORITHM RUNGE–KUTTA (ƒ, x0, y0, h, N).

This algorithm computes the solution of the initial value problem y� � ƒ(x, y), y(x0) � y0

at equidistant points

(9)

here ƒ is such that this problem has a unique solution on the interval [x0, xN] (see Sec. 1.7).

INPUT: Function ƒ, initial values x0, y0, step size h, number of steps N

OUTPUT: Approximation yn�1 to the solution y(xn�1) at

where

For do:

j
j
j
j
j
j
j OUTPUT

End

Stop

End RUNGE–KUTTA

xn�1, yn�1

 yn�1 � yn �
1

6 (k1 � 2k2 � 2k3 � k4)

 xn�1 � xn � h

 k4 � hf (xn � h, yn � k3)

 k3 � hf (xn �
1

2 h, yn �
1

2 k2)

 k2 � hf (xn �
1

2 h, yn �
1

2 k1)

 k1 � hf (xn, yn)

n � 0, 1, Á , N � 1

n � 0, 1, Á , N � 1

xn�1 � x0 � (n � 1) h,

x1 � x0 � h, x2 � x0 � 2h, Á , xN � x0 � Nh;

1Named after the German mathematicians KARL RUNGE (Sec. 19.4) and WILHELM KUTTA (1867–1944).

Runge [Math. Annalen 46 (1895), 167–178], the German mathematician KARL HEUN (1859–1929) [Zeitschr.

Math. Phys. 45 (1900), 23–38], and Kutta [Zeitschr. Math. Phys. 46 (1901), 435–453] developed various similar

methods. Theoretically, there are infinitely many fourth-order methods using four function values per step. The

method in Table 21.3 is most popular from a practical viewpoint because of its “symmetrical” form and its

simple coefficients. It was given by Kutta.

Writing out algorithms

Another example from Kreyszig, Adv. Eng. Math.

(4)

where I is the unit matrix and L and U are, respectively, lower and upper triangular

matrices with zero main diagonals. If we substitute (4) into we have

Taking Lx and Ux to the right, we obtain, since

(5)

Remembering from (3) in Example 1 that below the main diagonal we took “new”

approximations and above the main diagonal “old” ones, we obtain from (5) the desired

iteration formulas
“New” “Old”

(6)

where is the mth approximation and is the st

approximation. In components this gives the formula in line 1 in Table 20.2. The matrix

A must satisfy for all j. In Table 20.2 our assumption is no longer required,

but is automatically taken care of by the factor in line 1.1>ajj

ajj � 1ajj � 0

(m � 1)x
(m�1)

� [x j
(m�1)]x

(m)
� [x j

(m)]

(ajj � 1)x
(m�1)

� b � Lx
(m�1)

� Ux
(m)

x � b � Lx � Ux.

Ix � x,

Ax � (I � L � U)x � b.

Ax � b,

n � n

(ajj � 1)A � I � L � U

860 CHAP. 20 Numeric Linear Algebra

Table 20.2 Gauss–Seidel Iteration

ALGORITHM GAUSS–SEIDEL (A, b, x(0), , N)

This algorithm computes a solution x of the system Ax � b given an initial approximation

x(0), where A � [ajk] is an n � n matrix with ajj � 0, j � 1, • • • , n.

INPUT: A, b, initial approximation x(0), tolerance
 0, maximum number

of iterations N

OUTPUT: Approximate solution [] or failure message that x(N) does

not satisfy the tolerance condition

For m � 0, • • • , N � 1, do:

For j � 1, • • • , n, do:

1

End

2 If max
j

�x j
(m�1)

� x j
(m)� � �x j

(m�1)� then OUTPUT x(m�1). Stop

[Procedure completed successfully]

End

OUTPUT: “No solution satisfying the tolerance condition obtained after N

iteration steps.” Stop

[Procedure completed unsuccessfully]

End GAUSS–SEIDEL

P

x j
(m�1)

�
1

ajj
 abj � a

j�1

k�1

 ajkxk
(m�1)

� a
n

k�j�1

 ajkxk
(m)b

x j
(m)

x
(m)

�

P

P

How you can help (yourself and me)

Would help if you...

Keep learning python and numpy intricacies —
read sections of the official documentation

(or a good book) as bedtime reading

Install a linux/unix shell (a bash shell) on your own machine.

	Content/overview of module
	The unix/linux command line
	Programming language(s) — choice of python
	Changing landscape of computational physics
	Things not covered
	The practice of scientific computing
	You should...

