Computational Physics 2

Administrative

Lecturer: me

Lectures: Thursdays 12 noon - 1 pm
Labs: \quad Thursdays $2 \mathrm{pm}-4 \mathrm{pm}$

Mark distribution: Cont.assessment (= quizes + assignments) $\longrightarrow 30 \%$ Exam $\longrightarrow 70 \%$

MP468P Project: (dual-department students) Oct-May

Overview of lecture slides 00

(1) Content/overview of module
(2) The unix/linux command line
(3) Programming language(s) - choice of python

4 Changing landscape of computational physics
(5) Things not covered
(6) The practice of scientific computing
(7) You should...

Computational Physics 2: Content

Module topics

- Random numbers and stochastic processes
- Monte Carlo methods
- Linear algebra
(Linear sets of equations, matrix decompositions, eigenvalues)
- Minimisation / Optimisation
- Partial differential equations (PDEs)
+ ODE boundary value problems
- "Soft skills": unix/linux command-line, python

Computational Physics 2: Specialties

This module is a bit different...

- Components of $\left\{\begin{array}{l}\text { Math (linear algebra, PDE's) } \\ \text { Statistics (random processes, probability) } \\ \text { Computer Science (Algorithms) }\end{array}\right.$
- 'Lab' work
- May turn out to be the most useful subject for your future
- The most 'modern' module.
(Numerics with python - less than 20 years old)
- Some aspects will become outdated in a few years.
(Programming tools, workflow, etc. Not the principles.)

The command line

Why unix systems, why command line?

- Serious computing generally done on unix/linux machines
- Serious computing usually done remotely on multiple machines/cores
at high-performance computing facilities
(e.g., ICHEC in Ireland)
wherever you have access to multiple cpu's or gpu's
Difficult to work remotely without command-line knowledge!

The command line

Common commands

- Basic: Is, cd, cp, mv, rm, mkdir, less, grep, diff, cat, top, ps, kill
- Slightly less basic: ssh, find, awk, tar, sort, gzip, unzip, chmod, chown, tail, head

Combinations

- Piping the results of one command (program) into another: Is | sort -r Is -I | sort -g -k 5 cat *.tex | grep -i perturbative
- Redirection: output of one command sent to a file: cat file1.txt file2.txt > outfile.txt

Computer languages other than python

Should you learn other programming languages?

C? julia? Fortran? Mathematica? matlab/octave? maple?

SageMath? R? html? java? javascript? C ++ ? Go?
lisp? php? perl? bash? awk \& sed? Ruby? C\#?

Pascal? COBOL? Basic? Assembly language? POV-Ray?

Computer languages

Low-level vs High-level

- Low-level \rightarrow closer to machine; programmer implements many details; speed and control at the expense of programmer time.
- High-level \rightarrow closer to human; $\quad \approx$ scripting languages programmer uses libraries; pre-defined data structures
- Nowadays, low-level \approx compiled; high-level \approx interpreted.

Low-level languages:
(low to high)
Machine language
Assembly language
C / Fortran

High-level languages:
python / julia / matlab Mathematica / Maple awk / bash / perl

Using python for computational physics

Python: the best programming language ever (?)

- Widely used - lots of information easily available
- Easy to learn
interpreted not compiled, don't have to worry about variable types
- Libraries available for many common (and specialized) tasks.

Most relevant for us: numpy, scipy, matplotlib

- Speed does not matter nowadays for many tasks.

Many tasks done by external, non-python libraries.
Example: matrix eigensolvers call 'lapack' library.

- Counting starts at 0 instead of 1 , like a proper computer language.

Using python for computational physics

Python: a terrible choice of programming language

- Widely used - lots of junk information and incompetent users
- Slow. Very, very slow. Crawling slow. interpreted not compiled
- Sometimes speed actually matters.
E.g., Monte Carlo calculations.

To speed up critical parts of your code, you might have to write those parts in C/Fortran. \longrightarrow two-language problem

- Designed originally for computer people, not for physicists or for numerical work. We are secondary citizens in the python world. Sometimes this shows :-(
- Counting starts at 0 instead of 1 , an insult to people who deal with matrices and vectors.

Alternatives to python

Matlab/octave

- Pros: Designed for numerical work. Just-In-Time compiler makes matlab faster than python. Octave freely available. Packages less chaotic than for python.
- Cons: Matlab needs expensive license. Octave slower. Not a proper programming language.

C/ C++

- Pros: Fast if coded correctly.
- Cons: Have to learn a (much) more complicated language than python. Compilation necessary - development cycle slower. Memory allocations by hand. Not as many convenient predefined data structures. Using libraries is a more involved process.

Alternatives to python, continued

Fortran

- Pros: Designed explicitly for numerical work. Fast if coded correctly.
- Cons: Compilation cycle. Not used much outside numerics.

julia

- Pros: Designed explicitly for numerical work.

Aims to solve the two-language problem - aims to be fast to develop and fast to run. Aims to overcome deficits of python.

- Cons: Still new, and changing/growing.
E.g., libraries currently even more chaotic than python.

Alternatives to python, continued further

Mathematica/ Maple

- Pros: Combination of numerical and symbolic capabilities.
- Cons: Not free or open-source. Expensive license. Not general-purpose programming languages.

R

- Pros: Great for statistics. Great graphics package.
- Cons: Slow. Not as suitable for non-statistical tasks.

Changing landscape of computational physics

Algorithms and principles

- Mostly stable, but some things change
- Example: gradient descent

Changing landscape...

Programming practices (and fashions)

- Rapid change - be warned (and be prepared)
- python was considered unacceptably slow for numerics, until ~ 2005.
- double precision was considered unacceptably slow for numerics.
- integer division, different in python2 and python3.
- GPU usage increasingly unavoidable. :-(
- For scientific usage, python might be replaced by julia soon(ish).

Things not covered in MP468C

- Many, many aspects of numerical analysis!!

Graph algorithms, advanced data structures, adaptive numerical integration, extrapolation, finite element methods,

- Serious applications of computers in physics Quantum Monte Carlo, molecular dynamics, density functional theory,....
- Statistical data analysis, Machine learning
- Parallel computing
- GPU computing
- Cloud computing
- Other programming languages/paradigms: Matlab/octave, mathematica, julia, C, ...
- Many python features: objects/classes, sympy, making packages,...

The practice of computational physics

Do's and dont's

- Don't guess what a command/package does. Look it up. E.g., If you use np.arange $(2,10)$, first read its doc.
- Looking up documentation: use reliable sources.
- Start coding first, think later?

Please please please don't!!!

- First calculate by hand (on paper) whatever is needed. When possible: write out what you need to code as pesudocode or as an algorithm.

Practice - writing out algorithms

Example (from wikipedia page on Metropolis-Hastings)

1. Initialise
2. Pick an initial state x_{0}.
3. Set $t=0$.
4. Iterate
5. Generate a random candidate state x^{\prime} according to $g\left(x^{\prime} \mid x_{t}\right)$.
6. Calculate the acceptance probability $A\left(x^{\prime}, x_{t}\right)=\min \left(1, \frac{P\left(x^{\prime}\right)}{P\left(x_{t}\right)} \frac{g\left(x_{t} \mid x^{\prime}\right)}{g\left(x^{\prime} \mid x_{t}\right)}\right)$.
7. Accept or reject:
8. generate a uniform random number $u \in[0,1]$;
9. if $u \leq A\left(x^{\prime}, x_{t}\right)$, then accept the new state and set $x_{t+1}=x^{\prime}$;
10. if $u>A\left(x^{\prime}, x_{t}\right)$, then reject the new state, and copy the old state forward $x_{t+1}=x_{t}$.
11. Increment: set $t=t+1$.

Writing out algorithms

Example from Higham, Accuracy \& Stability of Numerical Algorithms

Power method
for finding eigenvalues
\% Choose a starting vector x. while not converged

$$
\begin{aligned}
& x:=A x \\
& x:=x /\|x\|_{\infty}
\end{aligned}
$$

end

Writing out algorithms

Another example from Higham, Accuracy \& Stability...

Computing the
QR decomposition
of an $n \times n$ matrix A, using a Gram-Schmidt-like method.

$$
\begin{aligned}
& a_{k}^{(1)}=a_{k}, k=1: n \\
& \text { for } k=1: n \\
& \quad r_{k k}=\left\|a_{k}^{(k)}\right\|_{2} \\
& \quad q_{k}=a_{k}^{(k)} / r_{k k} \\
& \quad \text { for } j=k+1: n \\
& \quad r_{k j}=q_{k}^{T} a_{j}^{(k)} \\
& \quad a_{j}^{(k+1)}=a_{j}^{(k)}-r_{k j} q_{k} \\
& \quad \text { end } \\
& \text { end }
\end{aligned}
$$

Writing out algorithms

Example from Kreyszig, Advanced Engineering Mathematics

$$
\begin{align*}
& \text { ALGORITHM RUNGE-KUTTA }\left(f, x_{0}, y_{0}, h, N\right) \text {. } \\
& \text { This algorithm computes the solution of the initial value problem } y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0} \\
& \text { at equidistant points } \\
& \text { (9) } \tag{9}\\
& \qquad \begin{array}{l}
x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \cdots, x_{N}=x_{0}+N h \text {; } \\
\text { here } f \text { is such that this problem has a unique solution on the interval }\left[x_{0}, x_{N}\right] \text { (see Sec. 1.7). } \\
\text { INPUT: Function } f \text {, initial values } x_{0}, y_{0} \text {, step size } h \text {, number of steps } N \\
\text { OUTPUT: Approximation } y_{n+1} \text { to the solution } y\left(x_{n+1}\right) \text { at } x_{n+1}=x_{0}+(n+1) h \text {, } \\
\text { where } n=0,1, \cdots, N-1
\end{array} \\
& \qquad \begin{array}{r}
\text { For } n=0,1, \cdots, N-1 \text { do: } \\
\qquad \begin{array}{r}
k_{1}=h f\left(x_{n}, y_{n}\right) \\
k_{2}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right) \\
k_{3}=h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{2}\right) \\
k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right) \\
x_{n+1}=x_{n}+h \\
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
\text { OUTPUT } x_{n+1}, y_{n+1}
\end{array} \\
\text { End } \\
\text { Stop }
\end{array} \\
& \text { End RUNGE-KUTTA }
\end{align*}
$$

Writing out algorithms

Another example from Kreyszig, Adv. Eng. Math.

Table 20.2 Gauss-Seidel Iteration

ALGORITHM GAUSS-SEIDEL (A, $\mathbf{b}, \mathbf{x}^{(0)}, \boldsymbol{\epsilon}, N$)

This algorithm computes a solution \mathbf{x} of the system $\mathbf{A x}=\mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$, where $\mathbf{A}=\left[a_{j k}\right]$ is an $n \times n$ matrix with $a_{j j} \neq 0, j=1, \cdots, n$.

INPUT: A, \mathbf{b}, initial approximation $\mathbf{x}^{(0)}$, tolerance $\epsilon>0$, maximum number of iterations N

OUTPUT: Approximate solution $\mathbf{x}^{(m)}=\left[x_{j}^{(m)}\right]$ or failure message that $\mathbf{x}^{(N)}$ does not satisfy the tolerance condition

For $m=0, \cdots, N-1$, do:

1
$x_{j}^{(m+1)}=\frac{1}{a_{j j}}\left(b_{j}-\sum_{k=1}^{j-1} a_{j k} x_{k}^{(m+1)}-\sum_{k=j+1}^{n} a_{j k} x_{k}^{(m)}\right)$
End
2
If $\max _{j}\left|x_{j}^{(m+1)}-x_{j}^{(m)}\right|<\epsilon\left|x_{j}^{(m+1)}\right|$ then OUTPUT $\mathbf{x}^{(m+1)}$. Stop
[Procedure completed successfully]
End
OUTPUT: "No solution satisfying the tolerance condition obtained after N iteration steps." Stop
[Procedure completed unsuccessfully]
End GAUSS-SEIDEL

How you can help (yourself and me)

Would help if you...

- Keep learning python and numpy intricacies read sections of the official documentation (or a good book) as bedtime reading
- Install a linux/unix shell (a bash shell) on your own machine.

