Overview of lecture slides 02

(1) Generating random numbers with desired distributions

- Inverse CDF sampling - brief review
- Rejection sampling - brief review
- Markov chain (Monte Carlo) sampling
(2) Normally-distributed (Gaussian) random numbers
(3) Monte Carlo integration
- Idea: sample values of integrand
- Monte Carlo vs standard methods
- Importance sampling

4 Summary

Generating random numbers with desired distributions

General methods

- Inverse transform sampling
- Rejection sampling
- Markov chain sampling (Metropolis/Hastings algorithm)

Various specialized algorithms for specific distributions

Inverse CDF sampling

x is uniformly distributed.
What transformation $y=f(x)$ will provide variable y with distribution $p(y)$?

$$
\mathcal{C}(y)=\int_{-\infty}^{y} p(z) d z \quad y=f(x)=\mathcal{C}^{-1}(x)
$$

Rejection sampling

We want to generate random numbers distributed according to $p(x)$, given a prng distributed as $f_{0}(x)$.

Rescale $f_{0}(x): f(x)=A f_{0}(x)$, so that $f(x)>p(x)$ everywhere.

Select points under $f(x)$ curve, accept with probability $p(x) / f(x)$

Implementation

(1) Pick number X according to distribution $\frac{1}{A} f(x)$, where $A=\int_{-\infty}^{\infty} f(x) d x$
(2) Accept X as your random number with probability $p(X) / f(X)$. i.e., reject X with probability $1-p(X) / f(X)$.

Markov chain sampling

Build a sequence of numbers which (eventually) have the desired distribution $p(x)$

A Markov chain \longrightarrow
series of stochastic values (numbers, states, etc). Each element is determined (stochastically) by previous element alone.

Markov chain algorithms \longrightarrow
generate series of numbers/states with desired distribution.

Markov chain sampling

Build a sequence of numbers which (eventually) have the desired distribution $p(x)$

Metropolis-Hastings algorithm

(1) Pick an initial value x_{0}
(2) For $i=0, \ldots$, until satisfied:
(A) Given x_{i}, generate a random candidate update value x^{\prime} according to probability distribution $g\left(x^{\prime} \mid x_{i}\right)$.
B Calculate the acceptance probability

$$
A=\min \left(1, \frac{p\left(x^{\prime}\right) g\left(x^{\prime} \mid x_{i}\right)}{p\left(x_{i}\right) g\left(x_{i} \mid x^{\prime}\right)}\right)
$$

© Accept or reject x^{\prime} as the next value in the Markov chain, according to probability A :
If accepting: $x_{i+1}=x^{\prime} ; \quad$ If rejecting: $x_{i+1}=x_{i}$.

Markov chain sampling

- Easiest choice for update proposal: choose x^{\prime} uniform-randomly, independent of x_{i}.
- Doesn't work if support is unbounded.
- Of course, accept/reject probability will depend on x_{i})
- Better choice: Choose x^{\prime} from a region close to x_{i}, e.g., uniformly from interval $\left(x_{i}-\delta, x_{i}+\delta\right)$.
- For both these choices:

$$
g\left(x^{\prime} \mid x_{i}\right)=g\left(x_{i} \mid x^{\prime}\right), \text { cancellation } \quad \longrightarrow \quad A=\min \left(1, \frac{p\left(x^{\prime}\right)}{p\left(x_{i}\right)}\right) .
$$

- Method can be easily generalized to multi-dimensional distributions. (We will use later for statistical mechanics.)
- Elements near each other along a Markov chain are correlated.
\longrightarrow Use every m-th element.

Gaussian random numbers

Gaussian-distributed random numbers - very useful, widely implemented.

We want a gaussian distribution

$$
P(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}
$$

Inverse transform sampling not suitable:

- we have no closed expression for $\int P(y) d y$
- we certainly have no closed expression for the inverse!
[scipy (in scipy.special) has functions erf and erfinv - numerical approximations]

Gaussian random numbers

Many algorithms available:

- summing a large enough number of uniform variates (central limit theorem)
- Box-Muller transformation
- Ziggurat method

Thomas, Luk, Leong, Villasenor, Gaussian Random Number Generators, ACM Computing Surveys, Vol. 39, No. 4, Article 11 (2007).

Gaussian random numbers - blackbox

Both rand and numpy.rand have inbuilt gaussian prng's

So do most other scientific computing systems gaussian prng's are considered indispensable and widely used

Gaussian random numbers - Box-Muller

Consider two gaussian distributions,

$$
P\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi} e^{-\left(y_{1}^{2}+y_{2}^{2}\right) / 2}=P\left(y_{1}\right) P\left(y_{2}\right)
$$

Transformation of two or more probability distributions:

$$
P_{Y}\left(y_{1}, y_{2}, \ldots\right)=P_{X}\left(x_{1}, x_{2}, \ldots\right)\left|\frac{\partial\left(x_{1}, x_{2}, \ldots\right)}{\partial\left(y_{1}, y_{2}, \ldots\right)}\right|
$$

Gaussian random numbers - Box-Muller

Box-Muller algorithm
If we take X_{1}, X_{2} uniform on $\langle 0,1\rangle$ and

$$
Y_{1}=\sqrt{-2 \ln X_{1}} \cos \left(2 \pi X_{2}\right) \quad Y_{2}=\sqrt{-2 \ln X_{1}} \sin \left(2 \pi X_{2}\right)
$$

then Y_{1}, Y_{2} are gaussian

Note

Avoid calls to $\ln , \sin , \cos , \ldots$ when possible - they are slow

Monte Carlo methods

Monte Carlo is a town in Monaco famous for its casinos
Monte Carlo methods are numerical methods based on random numbers

Various types

- Direct Monte Carlo
model complicated or unknown processes by random numbers
Stochastic dynamics, eg Brownian motion or traffic modelling
- Monte Carlo integration
calculate integrals using random numbers
- especially useful in many dimensions
- Markov chain Monte Carlo
generate statistical distributions using 'random walks'
widely used in many-particle physics, both classical and quantum

Monte Carlo integration - 1D version

Want to integrate function $f(x)$ on interval $[a, b]$:

$$
I=\int_{a}^{b} f(x) d x
$$

Standard numerical integration:

- Take N evenly spaced points x_{i} in $[a, b]$
- evaluate $f(x)$ at those points

$$
I=(b-a) \times\langle f\rangle \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

This is the rectangular integration or the the midpoint rule

Monte Carlo integration - 1D version

Standard numerical integration for $I=\int_{a}^{b} f(x) d x$:

- Mid-point rule with uniformly spaced x_{i} :

$$
I=(b-a) \times\langle f\rangle \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

- Vary weights: trapezoidal, Simpson's,

Simpson's 3/8, Boole's,..... rules
(Newton-Cotes quadrature formulae)

- Gaussian quadrature: use non-uniformly spaced points
chosen very specifically
- Other improvements:
- Vary N and extrapolate to $N \rightarrow \infty$
- Adaptively vary N and interval widths

Monte Carlo integration - 1D version

Mid-point rule with uniformly spaced x_{i} :

$$
I=(b-a) \times\langle f\rangle \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Instead of more elegant methods, let's consider a more crude version:

Monte Carlo integration

Pick the points x_{i} randomly!

Monte Carlo integration - 1D version

Sample randomly

$$
I=(b-a) \times\langle f\rangle \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(\xi_{i}\right)
$$

Where the ξ_{i} are uniformly sampled from [a, b]; i.e., from distribution

$$
p_{\xi}(x)= \begin{cases}1 /(b-a) & \text { if } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

Monte Carlo integration - multi-dimensional

Sample randomly for 1D integration

$$
I=(b-a) \times\langle f\rangle \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(\xi_{i}\right)=\frac{b-a}{N} \sum_{i=1}^{N} f_{i}
$$

where ξ_{i} are uniformly sampled from $[a, b]$.

Multi-variable (multi-dimensional) integration

Works in arbitrary numbers of dimensions:

$$
\int_{\Omega} f(\vec{r}) d V=V\langle f\rangle \quad \approx \quad \frac{V}{N} \sum_{i=1}^{N} f\left(\vec{\xi}_{i}\right)
$$

$\vec{r}=\left(x_{1}, x_{2}, \ldots x_{N}\right) . \quad V \longrightarrow$ hyper-volume of integration region Ω.
The $\vec{\xi}_{i}$ are uniformly sampled from Ω.

Monte Carlo integration - error

$$
\langle f\rangle \approx \frac{1}{N} \sum_{i=1}^{N} f\left(\xi_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} f_{i} \quad\left\{\begin{array}{l}
\text { estimating }\langle f\rangle \\
\text { using sample }\left\{f_{i}\right\}
\end{array}\right.
$$

Standard error of mean $\approx \frac{1}{\sqrt{N}} \times$ std.dev. of distribution/sample

Monte Carlo integration

$$
I \approx \frac{V}{N} \sum_{i=1}^{N} f_{i} \pm \frac{V}{\sqrt{N}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{2}-\left[\frac{1}{N} \sum_{i=1}^{N} f_{i}\right]^{2}}
$$

where
$f_{i} \rightarrow$ values of integrand at N uniform-randomly chosen points in integration region
$V \rightarrow$ hyper-volume of integration region

Monte Carlo integration - error

Monte Carlo integration

$$
I \approx \frac{V}{N} \sum_{i=1}^{N} f_{i} \pm \frac{V}{\sqrt{N}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{2}-\left[\frac{1}{N} \sum_{i=1}^{N} f_{i}\right]^{2}}
$$

Approximation: used $1 / \sqrt{N}$ instead of $1 / \sqrt{(N-1)}$ above
MC integration only makes sense for large N !

Monte Carlo integration - error derivation

The variance of a stochastic variable X is

$$
\sigma_{X}^{2} \equiv \operatorname{var} X \equiv\left\langle(X-\bar{X})^{2}\right\rangle=\left\langle X^{2}\right\rangle-\langle X\rangle^{2}
$$

For our MC integral we get

$$
\begin{aligned}
\sigma^{2} & =\left\langle\left(\frac{b-a}{N} \sum_{i} f_{i}\right)^{2}\right\rangle-\left\langle\frac{b-a}{N} \sum_{i} f_{i}\right\rangle^{2} \\
& =\frac{(b-a)^{2}}{N}\left[\frac{1}{N}\left\langle\sum_{i} f_{i}^{2}\right\rangle+\frac{1}{N}\left\langle\sum_{i \neq j} f_{i} f_{j}\right\rangle-N\langle f\rangle^{2}\right] \\
& =\frac{(b-a)^{2}}{N}\left(\left\langle f^{2}\right\rangle+\frac{1}{N} \sum_{i \neq j}\left\langle f_{i}\right\rangle\left\langle f_{j}\right\rangle-N \bar{f}^{2}\right) \\
& =\frac{(b-a)^{2}}{N}\left(\left\langle f^{2}\right\rangle+\frac{N(N-1)}{N}\langle f\rangle^{2}-N\langle f\rangle^{2}\right)=\frac{(b-a)^{2}}{N}\left(\left\langle f^{2}\right\rangle-\langle f\rangle^{2}\right)
\end{aligned}
$$

In going from the second to the third line we have used that f_{i} and f_{j} are independent and uncorrelated.

Monte Carlo integration - (dis)advantages

MC integration is very inefficient for one dimensional integrals.

Advantages

- works in arbitrary numbers of dimensions
- beats ordinary methods for very high numbers of dimensions
- works for complicated boundaries

Complicated boundary example: computing π

π is the area of the unit circle $x^{2}+y^{2}<1$
$\frac{\pi}{4}$ is the area of the quarter-circle $x^{2}+y^{2}<1 ; x, y \in\langle 0,1\rangle$
This can be written as a 2-dimensional integral:

$$
\frac{\pi}{4}=\int_{0}^{1} \int_{0}^{1} \Theta\left(1-\left(x^{2}+y^{2}\right)\right) d x d y \approx \frac{1}{N} \sum_{i} \Theta\left(1-\left(x_{i}^{2}+y_{i}^{2}\right)\right)
$$

Procedure

(1) Generate N pairs of random numbers $\left(x_{i}, y_{i}\right)$
(2) Add 1 each time $x_{i}^{2}+y_{i}^{2}<1$
(3) Divide by N to get the average
(9) Multiply by 4 , and you have π !

Complicated boundary example continued

The quarter-circle has areal density $\rho(x, y)$. Calculate it's mass.
π is the area of the unit circle $x^{2}+y^{2}<1$
$\frac{\pi}{4}$ is the area of the quadrant $x^{2}+y^{2}<1 ; x, y \in\langle 0,1\rangle$
This can be written as a 2-dimensional integral:
$M=\int_{0}^{1} \int_{0}^{1} \Theta\left(1-\left(x^{2}+y^{2}\right)\right) \rho(x, y) d x d y \approx \frac{1}{N} \sum_{i} \Theta\left(1-\left(x_{i}^{2}+y_{i}^{2}\right)\right) \rho\left(x_{i}, y_{i}\right)$

Procedure

(1) Generate N pairs of random numbers $\left(x_{i}, y_{i}\right)$
(2) Add $\rho\left(x_{i}, y_{i}\right)$ if $x_{i}^{2}+y_{i}^{2}<1$
(3) Divide the sum by N

Advantages in many dimensions

Monte Carlo error:

$$
\sigma^{2}=\frac{V^{2}}{N}\left(\left\langle f^{2}\right\rangle-\langle f\rangle^{2}\right) \quad \text { - the error decreases as } \frac{1}{\sqrt{N}}
$$

Standard numerical integration gives errors \propto powers of grid spacing δ.
One dimension: $\quad \operatorname{err} \sim \delta^{2} \sim \frac{1}{N^{2}}, \quad \delta^{3} \sim \frac{1}{N^{3}}, \ldots$
$\left\{\begin{array}{l}\text { Trapezoidal, } \\ \text { Simpson's,... }\end{array}\right.$
Error decreases much faster than Monte Carlo:
Monte Carlo:
$N \rightarrow 2 N$
$\Longrightarrow \quad \mathrm{err} \rightarrow \mathrm{err} / \sqrt{2}$
Trapezium:
$N \rightarrow 2 N$

$$
\Longrightarrow \quad \text { err } \rightarrow \mathrm{err} / 4
$$

$N \rightarrow 2 N$
Simpson's:
$\Longrightarrow \quad$ err \rightarrow err $/ 8$
Monte Carlo integration is really inefficient for one-variable integration!

Advantages in many dimensions

Monte Carlo integration is really inefficient for one-variable integration! But:

In d dimensions $N \sim\left(\frac{L}{\delta}\right)^{d} \Longrightarrow$ err $\sim N^{-k / d}$
Not so fast for large d
The Monte Carlo error is still $\sim N^{-1 / 2}$, independent of d

For large enough dimensions, Monte Carlo wins.
E.g., for trapezium ($k=2$) Monte Carlo is better once $d>4$

Importance sampling

If integrand is sharply peaked in some region, and small in others:

- Need high accuracy where f is big and varying
- Dont waste our time where it is close to zero

Sample more points where f is greater. How?

Choose x with probability $q(x)$ so that $f(x) / q(x) \approx$ constant.

$$
I=\int f(x) d x=\int q(x)\left[\frac{f(x)}{q(x)}\right] d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{q\left(x_{i}\right)}
$$

x_{i} 's sampled from probability distribution $q(x)$.

Summary

Random number distributions

- Inverse transform sampling
- Rejection sampling
- Markov chain sampling

Monte Carlo integration

- Integrate functions by randomly sampling points
- Errors decrease as $1 / \sqrt{N}$
- Superior for high-dimensional integrals
- Sample uniformly or with a weight function (importance sampling)

