Overview of lecture slides 02

@ Generating random numbers with desired distributions
@ Inverse CDF sampling — brief review
@ Rejection sampling — brief review
@ Markov chain (Monte Carlo) sampling

© Normally-distributed (Gaussian) random numbers

© Monte Carlo integration
@ |dea: sample values of integrand
@ Monte Carlo vs standard methods
@ Importance sampling

@ Summary

Generating random numbers with desired distributions

General methods
@ Inverse transform sampling

@ Rejection sampling

@ Markov chain sampling (Metropolis/Hastings algorithm)

Various specialized algorithms for specific distributions

Inverse CDF sampling

x is uniformly distributed.

What transformation y = f(x) will provide variable y with
distribution p(y)?

cly) = / " p(2)dz y = F(x) = C(x)

Rejection sampling

We want to generate random numbers distributed according to p(x), given
a prng distributed as fy(x).

Rescale fo(x): f(x) = Afo(x), so
that f(x) > p(x) everywhere.

Select points under f(x) curve,
accept with probability p(x)/f(x)

/|
o
_
|

Implementation

© Pick number X according to distribution %f(x), where
A= [f(x)dx

@ Accept X as your random number with probability p(X)/f(X).
i.e., reject X with probability 1 — p(X)/f(X).

Markov chain sampling

Build a sequence of numbers which (eventually) have the desired
distribution p(x)

A Markov chain —
series of stochastic values (numbers, states, etc). Each element is
determined (stochastically) by previous element alone.

Markov chain algorithms —
generate series of numbers/states with desired distribution.

Markov chain sampling

Build a sequence of numbers which (eventually) have the desired
distribution p(x)
Metropolis-Hastings algorithm

@ Pick an initial value xg

@ For i =0,..., until satisfied:

@ Given x;, generate a random candidate update value x’ according to
probability distribution g(x’|x;).
® Calculate the acceptance probability

A = min (1’ m>

@ Accept or reject x’ as the next value in the Markov chain, according to
probability A:

If accepting: xj11 = x'; If rejecting: xj11 = X;.

Markov chain sampling

@ Easiest choice for update proposal:
choose x” uniform-randomly, independent of x;.

» Doesn't work if support is unbounded.
» Of course, accept/reject probability will depend on x;)

@ Better choice: Choose x’ from a region close to x;,
e.g., uniformly from interval (x; — 0, x; + 0).

@ For both these choices:

, , p(X/))
x'|x;) = g(xi|x’), cancellation — A=min|1, .
(1) = (1) (1. 259

@ Method can be easily generalized to multi-dimensional distributions.
(We will use later for statistical mechanics.)

@ Elements near each other along a Markov chain are correlated.
— Use every m-th element.

Gaussian random numbers

Gaussian-distributed random numbers — very useful, widely implemented.

We want a gaussian distribution

Inverse transform sampling not suitable:

@ we have no closed expression for [P(y)dy

@ we certainly have no closed expression for the inverse!

[scipy (in scipy.special) has functions erf and erfinv — numerical
approximations]

Gaussian random numbers

Many algorithms available:

@ summing a large enough number of uniform variates
(central limit theorem)

@ Box-Muller transformation

@ Ziggurat method

Thomas, Luk, Leong, Villasenor, Gaussian Random Number Generators,
ACM Computing Surveys, Vol. 39, No. 4, Article 11 (2007).

Gaussian random numbers — blackbox

Both rand and numpy.rand have inbuilt gaussian prng's

So do most other scientific computing systems —
gaussian prng's are considered indispensable and widely used

Gaussian random numbers — Box-Muller

Consider two gaussian distributions,

1
Plyinye) = e UT00/% = PUn)P()

Transformation of two or more probability distributions:

A(x1, %2, ...) ‘

Py(y1,y2,...) = PX(Xl’X27"')‘3(Y1 ¥2,...)

Gaussian random numbers — Box-Muller

Box-Muller algorithm
If we take X1, Xo uniform on (0,1) and

Y1 = v/ —2In X1 cos(27X>) Yo = v/ —2In Xy sin(27X3)

then Y1, Y2 are gaussian

Note

Avoid calls to In,sin, cos, ... when possible — they are slow

Monte Carlo methods

Monte Carlo is a town in Monaco famous for its casinos

Monte Carlo methods are numerical methods based on random numbers

Various types

@ Direct Monte Carlo

model complicated or unknown processes by random numbers
Stochastic dynamics, eg Brownian motion or traffic modelling

@ Monte Carlo integration

calculate integrals using random numbers
especially useful in many dimensions

@ Markov chain Monte Carlo

generate statistical distributions using ‘random walks'
widely used in many-particle physics, both classical and quantum

Monte Carlo integration — 1D version

Want to integrate function f(x) on interval [a, b]:

Iziibﬂxﬁk

Standard numerical integration:

@ Take N evenly spaced points x; in [a, b]

@ evaluate f(x) at those points

%

I = (b—a)x(f) b&aE:ﬂm)
i=1

This is the rectangular integration or the the midpoint rule

Monte Carlo integration — 1D version

b
Standard numerical integration for | = / f(x)dx:

@ Mid-point rule with uniformly spaced x;:

A CED RIG R 310

i=1

@ Vary weights: trapezoidal, Simpson's,
Simpson's 3/8, Boole’s,..... rules
(Newton-Cotes quadrature formulae)
@ Gaussian quadrature: use non-uniformly spaced points
chosen very specifically

@ Other improvements:

» Vary N and extrapolate to N — oo
» Adaptively vary N and interval widths

Monte Carlo integration — 1D version

Mid-point rule with uniformly spaced x;:

I = (b-a)x(f) = bXIaZf(x,-)
i=1

Instead of more elegant methods, let's consider a more crude version:

Monte Carlo integration

Pick the points x; randomly!

Monte Carlo integration — 1D version

Sample randomly

b—aN
= (b-ax(f) ~ Z23f(E)
i=1

Where the &; are uniformly sampled from [a, b]; i.e., from distribution

otherwise

() = {(1)/(b— a) if x € [a, b]

Monte Carlo integration — multi-dimensional

Sample randomly for 1D integration

b—aN b—aN
I = (b—a)x({f) = N Ef(ﬁi) = Efi
i=1 i

where &; are uniformly sampled from |[a, b].

Multi-variable (multi-dimensional) integration
Works in arbitrary numbers of dimensions:
v N
[fmav=vin ~ 53 @)
2 i=1
r=(x1,x2,...xy). V. — hyper-volume of integration region Q.

The f_; are uniformly sampled from .

Monte Carlo integration - error

N N .)
1 1 estimating (f)
f) m o> FE) = 5> f
() N ; (&) N ; {using sample {f;}
1
Standard error of mean ~ —— x std.dev. of distribution/sample
TN /samp
Monte Carlo integration
v v |1 LA
| =~ — f £ —i= 2— = f;
DU A

where
f; — values of integrand at N uniform-randomly chosen points in
integration region

V — hyper-volume of integration region

Monte Carlo integration - error

Monte Carlo integration

V& 1

Vv
| = NZ#’, + 0 N;fiZ_

i=1

1 LT

Approximation: used 1/v/N instead of 1/1/(N — 1) above

MC integration only makes sense for large N!

Monte Carlo integration - error derivation
The variance of a stochastic variable X is

0% =varX = (X — X)?) = (X?) — (X)?

For our MC integral we get

S O G 3

1

- O R)

j i
(b 3)2

(1) + 5 S - NP

7(b—a)2 2y N(N-1) > 2 7([3—3)2 2 2
= 2 () + R = NG = 2 (1) - ()
In going from the second to the third line we have used that f; and f; are

independent and uncorrelated.

Monte Carlo integration — (dis)advantages

MC integration is very inefficient for one dimensional integrals.

Advantages

@ works in arbitrary numbers of dimensions
@ beats ordinary methods for very high numbers of dimensions

@ works for complicated boundaries

Complicated boundary example: computing 7

7 is the area of the unit circle x? 4+ y? < 1
.

7 is the area of the quarter-circle x> +y?<1;x,y €(0,1)

This can be written as a 2-dimensional integral:

:/01/01@(1—(x2+y)dxdy~—29<1— X; ‘H/,))

Procedure
© Generate N pairs of random numbers (x;, y;)
@ Add 1 each time xl-2 —I—y,-2 <1
© Divide by N to get the average
© Multiply by 4, and you have 7!

Complicated boundary example continued

The quarter-circle has areal density p(x, y). Calculate it's mass.

7 is the area of the unit circle x> + y? < 1
™

7 is the area of the quadrant x> +y?<1;x,y €(0,1)

This can be written as a 2-dimensional integral:

M= / / (<)) (x:y)dxd N*Z@(O +yi))P(Xia)/i)

Procedure
© Generate N pairs of random numbers (x;, y;)
Q@ Add p(x;,y;) if X,-2 —|—y,-2 <1
© Divide the sum by N

Advantages in many dimensions

Monte Carlo error:

V2 1
2 _ (2 2
o f f) — the error decreases as —
(R =
Standard numerical integration gives errors o< powers of grid spacing 4.
1 1 Trapezoidal,
One dimension: err~62~—2, 63~—3,... r pezel
N N Simpson’s, ..

Error decreases much faster than Monte Carlo:

Monte Carlo: N — 2N — e —err/V2
Trapezium: N — 2N = err—err/4
Simpson's: N — 2N = err—err/8

Monte Carlo integration is really inefficient for one-variable integration!

Advantages in many dimensions

Monte Carlo integration is really inefficient for one-variable integration!
But:

In d dimensions N ~ (£)? = err ~ N=K/d

Not so fast for large d

The Monte Carlo error is still ~ N=1/2, independent of d

For large enough dimensions, Monte Carlo wins.

E.g., for trapezium (k = 2) Monte Carlo is better once d > 4

Importance sampling

If integrand is sharply peaked in
some region, and small in others:

@ Need high accuracy where f is
big and varying of

@ Dont waste our time where it |
is close to zero

Sample more points where f is greater. How?

Choose x with probability g(x) so that f(x)/q(x) =~ constant.

1= [s [(G = 530

x;'s sampled from probability distribution g(x).

Summary

Random number distributions
@ Inverse transform sampling
@ Rejection sampling

@ Markov chain sampling

Monte Carlo integration
@ Integrate functions by randomly sampling points
@ Errors decrease as 1/\/N
@ Superior for high-dimensional integrals

@ Sample uniformly or with a weight function (importance sampling)

	Generating random numbers with desired distributions
	Inverse CDF sampling — brief review
	Rejection sampling — brief review
	Markov chain (Monte Carlo) sampling

	Normally-distributed (Gaussian) random numbers
	Monte Carlo integration
	Idea: sample values of integrand
	Monte Carlo vs standard methods
	Importance sampling

	Summary

