
Overview of lecture slides 02

1 Generating random numbers with desired distributions
Inverse CDF sampling — brief review
Rejection sampling — brief review
Markov chain (Monte Carlo) sampling

2 Normally-distributed (Gaussian) random numbers

3 Monte Carlo integration
Idea: sample values of integrand
Monte Carlo vs standard methods
Importance sampling

4 Summary

Generating random numbers with desired distributions

General methods

Inverse transform sampling

Rejection sampling

Markov chain sampling (Metropolis/Hastings algorithm)

Various specialized algorithms for specific distributions

Inverse CDF sampling

x is uniformly distributed.

What transformation y = f (x) will provide variable y with
distribution p(y)?

C(y) =

∫ y

−∞
p(z)dz y = f (x) = C−1(x)

Rejection sampling

We want to generate random numbers distributed according to p(x), given
a prng distributed as f0(x).

Rescale f0(x): f (x) = Af0(x), so
that f (x) > p(x) everywhere.

Select points under f (x) curve,
accept with probability p(x)/f (x)

Implementation

1 Pick number X according to distribution 1
A f (x), where

A =
∫∞
−∞ f (x)dx

2 Accept X as your random number with probability p(X)/f (X).
i.e., reject X with probability 1− p(X)/f (X).

Markov chain sampling

Build a sequence of numbers which (eventually) have the desired
distribution p(x)

A Markov chain −→
series of stochastic values (numbers, states, etc). Each element is
determined (stochastically) by previous element alone.

Markov chain algorithms −→
generate series of numbers/states with desired distribution.

Markov chain sampling

Build a sequence of numbers which (eventually) have the desired
distribution p(x)

Metropolis-Hastings algorithm

1 Pick an initial value x0

2 For i = 0, . . . , until satisfied:

A Given xi , generate a random candidate update value x ′ according to
probability distribution g(x ′|xi).

B Calculate the acceptance probability

A = min

(
1,

p(x ′)g(x ′|xi)
p(xi)g(xi |x ′)

)
C Accept or reject x ′ as the next value in the Markov chain, according to

probability A:
If accepting: xi+1 = x ′; If rejecting: xi+1 = xi .

Markov chain sampling

Easiest choice for update proposal:
choose x ′ uniform-randomly, independent of xi .

I Doesn’t work if support is unbounded.
I Of course, accept/reject probability will depend on xi)

Better choice: Choose x ′ from a region close to xi ,
e.g., uniformly from interval (xi − δ, xi + δ).

For both these choices:

g(x ′|xi) = g(xi |x ′), cancellation −→ A = min

(
1,

p(x ′)

p(xi)

)
.

Method can be easily generalized to multi-dimensional distributions.
(We will use later for statistical mechanics.)

Elements near each other along a Markov chain are correlated.
−→ Use every m-th element.

Gaussian random numbers

Gaussian-distributed random numbers — very useful, widely implemented.

We want a gaussian distribution

P(y) =
1√
2π

e−y
2/2

Inverse transform sampling not suitable:

we have no closed expression for
∫
P(y)dy

we certainly have no closed expression for the inverse!

[scipy (in scipy.special) has functions erf and erfinv — numerical
approximations]

Gaussian random numbers

Many algorithms available:

summing a large enough number of uniform variates
(central limit theorem)

Box-Muller transformation

Ziggurat method

.....

Thomas, Luk, Leong, Villasenor, Gaussian Random Number Generators,

ACM Computing Surveys, Vol. 39, No. 4, Article 11 (2007).

Gaussian random numbers — blackbox

Both rand and numpy.rand have inbuilt gaussian prng’s

So do most other scientific computing systems —
gaussian prng’s are considered indispensable and widely used

Gaussian random numbers – Box-Muller

Consider two gaussian distributions,

P(y1, y2) =
1

2π
e−(y2

1 +y2
2)/2 = P(y1)P(y2)

Transformation of two or more probability distributions:

PY (y1, y2, . . .) = PX (x1, x2, . . .)

∣∣∣∣∣∂(x1, x2, . . .)

∂(y1, y2, . . .)

∣∣∣∣∣

Gaussian random numbers – Box-Muller

Box-Muller algorithm

If we take X1,X2 uniform on 〈0, 1〉 and

Y1 =
√
−2 lnX1 cos(2πX2) Y2 =

√
−2 lnX1 sin(2πX2)

then Y1,Y2 are gaussian

Note

Avoid calls to ln, sin, cos, . . . when possible — they are slow

Monte Carlo methods

Monte Carlo is a town in Monaco famous for its casinos

Monte Carlo methods are numerical methods based on random numbers

Various types

Direct Monte Carlo
I model complicated or unknown processes by random numbers
I Stochastic dynamics, eg Brownian motion or traffic modelling

Monte Carlo integration
I calculate integrals using random numbers
I especially useful in many dimensions

Markov chain Monte Carlo
I generate statistical distributions using ‘random walks’
I widely used in many-particle physics, both classical and quantum

Monte Carlo integration – 1D version

Want to integrate function f (x) on interval [a, b]:

I =

∫ b

a
f (x)dx

Standard numerical integration:

Take N evenly spaced points xi in [a, b]

evaluate f (x) at those points

I = (b − a)× 〈f 〉 ≈ b − a

N

N∑
i=1

f (xi)

This is the rectangular integration or the the midpoint rule

Monte Carlo integration – 1D version

Standard numerical integration for I =

∫ b

a
f (x)dx :

Mid-point rule with uniformly spaced xi :

I = (b − a)× 〈f 〉 ≈ b − a

N

N∑
i=1

f (xi)

Vary weights: trapezoidal, Simpson’s,
Simpson’s 3/8, Boole’s,..... rules

(Newton-Cotes quadrature formulae)

Gaussian quadrature: use non-uniformly spaced points
chosen very specifically

Other improvements:

I Vary N and extrapolate to N →∞
I Adaptively vary N and interval widths

Monte Carlo integration – 1D version

Mid-point rule with uniformly spaced xi :

I = (b − a)× 〈f 〉 ≈ b − a

N

N∑
i=1

f (xi)

Instead of more elegant methods, let’s consider a more crude version:

Monte Carlo integration

Pick the points xi randomly!

Monte Carlo integration – 1D version

Sample randomly

I = (b − a)× 〈f 〉 ≈ b − a

N

N∑
i=1

f (ξi)

Where the ξi are uniformly sampled from [a, b]; i.e., from distribution

pξ(x) =

{
1/(b − a) if x ∈ [a, b]

0 otherwise

Monte Carlo integration – multi-dimensional

Sample randomly for 1D integration

I = (b − a)× 〈f 〉 ≈ b − a

N

N∑
i=1

f (ξi) =
b − a

N

N∑
i=1

fi

where ξi are uniformly sampled from [a, b].

Multi-variable (multi-dimensional) integration

Works in arbitrary numbers of dimensions:∫
Ω
f (~r)dV = V 〈f 〉 ≈ V

N

N∑
i=1

f (~ξi)

~r = (x1, x2,xN). V −→ hyper-volume of integration region Ω.

The ~ξi are uniformly sampled from Ω.

Monte Carlo integration - error

〈f 〉 ≈ 1

N

N∑
i=1

f (ξi) =
1

N

N∑
i=1

fi

{
estimating 〈f 〉
using sample {fi}

Standard error of mean ≈ 1√
N
× std.dev. of distribution/sample

Monte Carlo integration

I ≈ V

N

N∑
i=1

fi ± V√
N

√√√√ 1

N

N∑
i=1

f 2
i −

[
1

N

N∑
i=1

fi

]2

where

fi → values of integrand at N uniform-randomly chosen points in
integration region

V → hyper-volume of integration region

Monte Carlo integration - error

Monte Carlo integration

I ≈ V

N

N∑
i=1

fi ± V√
N

√√√√ 1

N

N∑
i=1

f 2
i −

[
1

N

N∑
i=1

fi

]2

Approximation: used 1/
√
N instead of 1/

√
(N − 1) above

MC integration only makes sense for large N!

Monte Carlo integration - error derivation
The variance of a stochastic variable X is

σ2
X ≡ varX ≡ 〈(X − X̄)2〉 = 〈X 2〉 − 〈X 〉2

For our MC integral we get

σ2 =

〈(b − a

N

∑
i

fi

)2
〉
−
〈
b − a

N

∑
i

fi

〉2

=
(b − a)2

N

[1

N

〈∑
i

f 2
i

〉
+

1

N

〈∑
i 6=j

fi fj

〉
− N〈f 〉2

]
=

(b − a)2

N

(
〈f 2〉+

1

N

∑
i 6=j

〈
fi
〉〈
fj
〉
− Nf̄ 2

)
=

(b − a)2

N

(
〈f 2〉+

N(N − 1)

N
〈f 〉2 − N〈f 〉2

)
=

(b − a)2

N

(
〈f 2〉 − 〈f 〉2

)
In going from the second to the third line we have used that fi and fj are
independent and uncorrelated.

Monte Carlo integration – (dis)advantages

MC integration is very inefficient for one dimensional integrals.

Advantages

works in arbitrary numbers of dimensions

beats ordinary methods for very high numbers of dimensions

works for complicated boundaries

Complicated boundary example: computing π

π is the area of the unit circle x2 + y2 < 1
π
4 is the area of the quarter-circle x2 + y2 < 1; x , y ∈ 〈0, 1〉

This can be written as a 2-dimensional integral:

π

4
=

∫ 1

0

∫ 1

0
Θ
(

1− (x2 + y2)
)
dxdy ≈ 1

N

∑
i

Θ
(

1− (x2
i + y2

i)
)

Procedure
1 Generate N pairs of random numbers (xi , yi)

2 Add 1 each time x2
i + y2

i < 1

3 Divide by N to get the average

4 Multiply by 4, and you have π!

Complicated boundary example continued

The quarter-circle has areal density ρ(x , y). Calculate it’s mass.
π is the area of the unit circle x2 + y2 < 1
π
4 is the area of the quadrant x2 + y2 < 1; x , y ∈ 〈0, 1〉

This can be written as a 2-dimensional integral:

M =

∫ 1

0

∫ 1

0
Θ
(

1−(x2+y2)
)
ρ(x , y)dxdy ≈ 1

N

∑
i

Θ
(

1−(x2
i +y2

i)
)
ρ(xi , yi)

Procedure
1 Generate N pairs of random numbers (xi , yi)

2 Add ρ(xi , yi) if x2
i + y2

i < 1

3 Divide the sum by N

Advantages in many dimensions

Monte Carlo error:

σ2 =
V 2

N

(
〈f 2〉 − 〈f 〉2

)
— the error decreases as

1√
N

Standard numerical integration gives errors ∝ powers of grid spacing δ.

One dimension: err ∼ δ2 ∼ 1

N2
, δ3 ∼ 1

N3
, . . .

{
Trapezoidal,

Simpson’s,...

Error decreases much faster than Monte Carlo:

Monte Carlo: N → 2N =⇒ err→ err/
√

2

Trapezium: N → 2N =⇒ err→ err/4

Simpson’s: N → 2N =⇒ err→ err/8

Monte Carlo integration is really inefficient for one-variable integration!

Advantages in many dimensions

Monte Carlo integration is really inefficient for one-variable integration!
But:

In d dimensions N ∼ (Lδ)d =⇒ err ∼ N−k/d

Not so fast for large d

The Monte Carlo error is still ∼ N−1/2, independent of d

For large enough dimensions, Monte Carlo wins.

E.g., for trapezium (k = 2) Monte Carlo is better once d > 4

Importance sampling

If integrand is sharply peaked in
some region, and small in others:

Need high accuracy where f is
big and varying

Dont waste our time where it
is close to zero

Sample more points where f is greater. How?

Choose x with probability q(x) so that f (x)/q(x) ≈ constant.

I =

∫
f (x)dx =

∫
q(x)

[
f (x)

q(x)

]
dx ≈ 1

N

N∑
i=1

f (xi)

q(xi)

xi ’s sampled from probability distribution q(x).

Summary

Random number distributions

Inverse transform sampling

Rejection sampling

Markov chain sampling

Monte Carlo integration

Integrate functions by randomly sampling points

Errors decrease as 1/
√
N

Superior for high-dimensional integrals

Sample uniformly or with a weight function (importance sampling)

	Generating random numbers with desired distributions
	Inverse CDF sampling — brief review
	Rejection sampling — brief review
	Markov chain (Monte Carlo) sampling

	Normally-distributed (Gaussian) random numbers
	Monte Carlo integration
	Idea: sample values of integrand
	Monte Carlo vs standard methods
	Importance sampling

	Summary

