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Monte Carlo integration — uniform sampling - recap

Monte Carlo integration with uniform sampling

V& v [1d A
I= [ f(NdV =~ — i + —l= 2_|= f;
frow ~ 3% = Fanr- vy
with f; = f(&)); &; are uniformly sampled from €2.

Error scales as 1/ N
Error proportional to /variance of function values
Superior to fixed-grid and Gaussian quadrature in high dimensions

Simple to deal with complicated boundaries



Monte Carlo integration — weights, importance sampling

Consider integral I:/ f(F)dV:/P(F)g(F)dV
Q Q

p(7) — a prob. dist. from which we know how to draw random numbers.

Should be normalized: / p(r)dV = 1.
Q

If h = / w(r)g(r)dV and w(F) is not normalized, use appropriate factor:
Q

h=cl=c /Q p(PePdv  with  p(r) = )



Monte Carlo integration — weights, importance sampling

If region is sampled according to distribution p(7), expectation value of an
observable A(F) is

(A) = / p(AAF)dV {Normalized p(x):
Q

no volume factor

Thus

Monte Carlo integration with weighted sampling

N
e 1
/—/Qp(r)g(r)dV ~ N;g,

with gi = g(&); &; are sampled with probability p(x).

Error given by v/variance of g, not of integrand f = pg.



Monte Carlo integration — weights, importance sampling

Monte Carlo integration with weighted sampling

1 & e
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with g; = g(&); &; are sampled with probability p(x).

o Error still scales as 1/v/N

@ When g() has less variance than full integrand f(7) = p(r)g(7) —
better than uniform sampling — focuses on important regions of £2.



Importance sampling

If integrand is sharply peaked in
some region, and small in others:

@ Need high accuracy where f is
big and varying oF
@ Dont waste time where it is L
close to zero

Sample more points where f is greater. How?
Choose x with probability p(x) so that f(x)/p(x) ~ constant.

,:/f(x)dx:/P(X)[;g;]dX ~ Ii/lz,:;

x;'s sampled from probability distribution p(x).

f(xi)
p(xi)




Importance sampling — Example 1

1
| = / e Xg(x)dx
0
Very tempting to use numpy.random.exponential ().

Turn e~ into a probability distribution:

| = c/ol [e:] g(x)dx = c/ol p(x)g(x)dx  with c = /01 exdx = &1

¢ e
How to sample from p(x) o< e=* with support (0,1)?
— sample from exponential on (0, 00); reject values > 1.

| =~ cx N Zg({,-) with &;'s sampled from p(x)



Importance sampling — Example 2: variational approx.

Variational principle:
apprxomiation (upper bound) to ground state energy of H given by

- <¢v’f:/’¢v) {wv — variational wavefunction (trial wavefn)

E, =
{¥v]vv)

E, to be minimized over class of trial wavefn's

Before minimizing, have to calculate E, first
— can be a serious computational problem. E.g.,

1 N X Id be, e.g.,
Eo= oy [ Rui) Bads) )0 0 .
(v|vv) 3N-dimensional for N particles

Rewrite as )

_ b4 ‘wV()_{) 'L\lwv(}?)
E”_/ i Wolty)  u(X)

First factor is a probability dist. Sample from this using Markov chain MC.



Importance sampling — Example 2: variational approx.

Variational Quantum Monte Carlo

_ [ gz O Ao
EV_/ T PR TN €

First factor is a probability dist. Sample from this using Markov chain MC.

‘ 2

One of several variants of Quantum Monte Carlo (QMC) techniques
used in quantum many-body physics



Monte Carlo for classical statistical physics

Monte Carlo widely used to sample statistical distributions
e.g., thermodynamic properties of polymers, magnetic systems, proteins,

Sample the Boltzmann distribution %e‘ﬁE(X), where
X is system configuration, a many-dimensional variable



Classical statistical physics

Microscopically

Large number of individual degrees of freedom {p;, g;}, H(p, q)
Classical evolution is deterministic and reversible )

Macroscopically

A few thermodynamical control variables: T, u, V
and bulk thermodynamical properties: ¢, P, S, ...
Evolution is statistical and irreversible )

Statistical physics: bridges micro <+ macro

Work with ensembles of microscopic configurations
Probability of configuration X = {p;, g;} is

P(X) o e PHX) = o=H(X)/ke T

— ‘definition’ of temperature




Why Monte Carlo?

Only a few systems can be ‘solved’ analytically
— simulation is an essential tool

Task
Generate configurations with probability weight P(X) e=PHX)

Each value of X represents a state or configuration of the system.

2
ldeal gas: H =Y. 2. — P(X) = product of gaussians — easy

i2m
With interactions: not so easy

Common recipe

Construct a series of configurations via a stochastic process




Stochastic processes

This is itself a topic in statistical physics / mathematics / statistics
Unlike deterministic processes, not modelled by usual pde's

Main topic: probability of being in certain states at time t:
e What is P(x); = Wj(x, t) — prob of state x at time t?
e What is P(x¢, yr,) = Wa(x, t1,y, to) — prob of x at t; and y at t»?
o What is P(x¢, ¥t,, 2t;) = Wa(x, t1,y, ta, 2, t3) etc?
e What is P(yy,|xt,) — prob of getting from x at t; to y at t?



Stochastic processes

Examples
@ Brownian motion @ Stock markets
o Diffusion and drift .
@ Many-particle systems
@ Population dynamics e.g., Ising model
Types
@ Poisson process @ Lévy process
@ Markov process @ Martingale
@ Bernoulli process @ Discrete-time random walks
@ Wiener process °




Properties of stochastic processes

x, t can be discrete or continuous
/Wl(x, t)dx = 1; W, > 0Vn

/ WZ(Xa t1,y, t2)dX = Wl()/a t2); / WZ(Xv t1, Yy, t2)dy = Wl(Xa t2)

x can be either a single number (discrete or continuous),
or a collection of numbers representing a configuration.



Properties of stochastic processes
X, t can be discrete or continuous

/Wl(x, t)dx =1; W, > 0Vn

/ WZ(Xa t1,Y, t2)dX = Wl(ya t2); / W2(Xa t1, Y, t2)dy = Wl(Xa t2)

Stationary processes

Wa(x, t) = Wi(x) = P(x) independent of t
Wa(x1, t1, xe, t2) = Wa(x1, x2; t2 — t1)

Ergodic processes

If ensemble mean equals time average then the process is ergodic
The process will ‘visit" all possible states of the system

@ every state must be accessible from every other state
@ no periodicity




Autocorrelations

Measure the ‘memory’ of the process:

Roltr, &) = (A(t)Ad(22)) = ((6(t1) — (6(11))) (4(82) — (6(22))))
= /(¢(X1, t1)—(d(t1))) ((x2, t2)—(¢(t2))) Wa(x1, t1, x2, t2)dx1dxo

Here ¢ is a stochastic variable.

For stationary process: (¢(t1)) = (¢(t2)) = constant

Ro(t2 — 1) = Ry(7) = (Ap(0)Ag(T))

Typically Ry(7) ~ e~ /7o where T4 is the autocorrelation time.



Markov processes

Simple(st) stochastic process: uncorrelated random process
Wg(Xl,tl,Xg,tg) = W1(X1,t1)W2(X2,t2) - R(T) :C(S(T)

All information contained in W;'s.

Next simplest: all information is in W, — Markov process

A Markov process is a random process in which the future is independent
of the past, given the present.



Markov processes

Define transition probabilities
(for either discrete time and continuous time)

P(X2t2|X1t1) = T(Xl, t; — X2, t2) /P(X2t2|X1t1)dX2 =1

Wa(x1, t1, xo, t2) = Wa(x1, t1) P(xata|x1t1)

All information about dynamics of the process is in T.

Where we go next is independent of how we got there.

We focus on discrete time:

P(Xntn|X,,,1tn,1 ... Xltl) = P(Xntn’anltnfl)

Only the most recent time counts!



Markov processes

Examples of Markov processes
@ random walk

@ population dynamics

Examples of non-Markov processes
o self-avoiding random walk

@ stock markets

Markov chains

With discrete time steps: Markov chain
— need only look at transition probabilities from one time step to next

T(Xty = Ytor1) = T(X = Y)




The Master Equation

Look at probability of being in state X at time t, P(X,t)

P(X, tht1) ZP Y, t))T(Y = X)

P(X,t,) = ZPX ta) T(X = Y)

Master equation, discrete time

P(X, tns1) — P(X,ta) = > [P(Y, E)T(Y = X) — P(X, tn) T(X — Y)}
Y

Continuous time:

OP(x,t)
ot

= /[P(y, t)t(y — x) — P(x, t)t(x — Y)} dy



Detailed balance

For a stationary process P(X, tht1) = P(X, tn) = P(X)
—  rhs of Master Equation is 0.

Sufficient condition
P(X)T(X = Y)=P(Y)T(Y — X) Detailed balance J

If detailed balance is satisfied: Markov chain will follow irreversible process
towards stationary distribution (towards equilibrium)

Markov chain Monte Carlo

Use such a process to create configurations X
with desired distribution P(X)

Design update rule/algorithm (transition probability T)
satisfying detailed balance for desired distribution P(X)




Summary

Monte Carlo integration
@ Via uniform or weighted sampling.

@ Importance sampling can drastically improve performance

Markov processes
@ A Markov process is a stochastic process with no memory
@ Described by transition probabilities
@ All Markov processes obey the master equation
°

Detailed balance is a sufficient condition for a stationary process
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