Overview of Slides 03

(1) Monte Carlo integration

- Recap
- Importance sampling
(2) Monte Carlo methods in statistical physics
(3) Stochastic processes
- General Intro
- Markov processes
- Master equation; detailed balance
(4) Summary

Monte Carlo integration - uniform sampling - recap

Monte Carlo integration with uniform sampling

$$
I=\int_{\Omega} f(\vec{r}) d V \approx \frac{V}{N} \sum_{i=1}^{N} f_{i} \pm \frac{V}{\sqrt{N}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} f_{i}^{2}-\left[\frac{1}{N} \sum_{i=1}^{N} f_{i}\right]^{2}}
$$

with $f_{i}=f\left(\xi_{i}\right) ; \quad \xi_{i}$ are uniformly sampled from Ω.

- Error scales as $1 / \sqrt{N}$
- Error proportional to $\sqrt{\text { variance }}$ of function values
- Superior to fixed-grid and Gaussian quadrature in high dimensions
- Simple to deal with complicated boundaries

Monte Carlo integration - weights, importance sampling

Consider integral $\quad I=\int_{\Omega} f(\vec{r}) d V=\int_{\Omega} p(\vec{r}) g(\vec{r}) d V$
$p(\vec{r}) \rightarrow$ a prob. dist. from which we know how to draw random numbers. Should be normalized: $\int_{\Omega} p(\vec{r}) d V=1$.

If $I_{1}=\int_{\Omega} w(\vec{r}) g(\vec{r}) d V$ and $w(\vec{r})$ is not normalized, use appropriate factor:

$$
I_{1}=c l=c \int_{\Omega} p(\vec{r}) g(\vec{r}) d V \quad \text { with } \quad p(\vec{r})=\frac{w(\vec{r})}{c}=\frac{w(\vec{r})}{\int_{\Omega} w(\vec{r})}
$$

Monte Carlo integration - weights, importance sampling

If region is sampled according to distribution $p(\vec{r})$, expectation value of an observable $A(\vec{r})$ is

$$
\langle A\rangle=\int_{\Omega} p(\vec{r}) A(\vec{r}) d V \quad\left\{\begin{array}{l}
\text { Normalized } p(x): \\
\text { no volume factor }
\end{array}\right.
$$

Thus

Monte Carlo integration with weighted sampling

$$
I=\int_{\Omega} p(\vec{r}) g(\vec{r}) d V \quad \approx \frac{1}{N} \sum_{i=1}^{N} g_{i}
$$

with $g_{i}=g\left(\xi_{i}\right) ; \quad \xi_{i}$ are sampled with probability $p(x)$.

Error given by $\sqrt{\text { variance }}$ of g, not of integrand $f=p g$.

Monte Carlo integration - weights, importance sampling

Monte Carlo integration with weighted sampling
$I=\int_{\Omega} p(\vec{r}) g(\vec{r}) d V \approx \frac{1}{N} \sum_{i=1}^{N} g_{i} \pm \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N} \sum_{i=1}^{N} g_{i}^{2}-\left[\frac{1}{N} \sum_{i=1}^{N} g_{i}\right]^{2}}$ with $g_{i}=g\left(\xi_{i}\right) ; \quad \xi_{i}$ are sampled with probability $p(x)$.

- Error still scales as $1 / \sqrt{N}$
- When $g(\vec{r})$ has less variance than full integrand $f(\vec{r})=p(\vec{r}) g(\vec{r}) \rightarrow$ better than uniform sampling - focuses on important regions of Ω.

Importance sampling

If integrand is sharply peaked in some region, and small in others:

- Need high accuracy where f is big and varying
- Dont waste time where it is close to zero

Sample more points where f is greater. How?

Choose x with probability $p(x)$ so that $f(x) / p(x) \approx$ constant.

$$
I=\int f(x) d x=\int p(x)\left[\frac{f(x)}{p(x)}\right] d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

x_{i} 's sampled from probability distribution $p(x)$.

Importance sampling — Example 1

$$
I=\int_{0}^{1} e^{-x} g(x) d x
$$

Very tempting to use numpy.random.exponential().
Turn e^{-x} into a probability distribution:
$I=c \int_{0}^{1}\left[\frac{e^{-x}}{c}\right] g(x) d x=c \int_{0}^{1} p(x) g(x) d x \quad$ with $c=\int_{0}^{1} e^{-x} d x=\frac{e-1}{e}$

How to sample from $p(x) \propto e^{-x}$ with support $(0,1)$?
\rightarrow sample from exponential on $(0, \infty)$; reject values >1.
$I \approx c \times \frac{1}{N} \sum_{i=1}^{N} g\left(\xi_{i}\right) \quad$ with ξ_{i} 's sampled from $p(x)$

Importance sampling - Example 2: variational approx.

Variational principle:
apprxomiation (upper bound) to ground state energy of \hat{H} given by

$$
E_{v}=\frac{\left\langle\psi_{v}\right| \hat{H}\left|\psi_{v}\right\rangle}{\left\langle\psi_{v} \mid \psi_{v}\right\rangle} \quad\left\{\begin{array}{l}
\psi_{v} \rightarrow \text { variational wavefunction (trial wavefn) } \\
E_{v} \text { to be minimized over class of trial wavefn's }
\end{array}\right.
$$

Before minimizing, have to calculate E_{V} first
\rightarrow can be a serious computational problem. E.g.,
$E_{v}=\frac{1}{\left\langle\psi_{v} \mid \psi_{v}\right\rangle} \int d \vec{x} \psi_{v}^{*}(\vec{x}) \hat{H} \psi_{v}(\vec{x}) \quad\left\{\begin{array}{l}\vec{x} \text { could be, e.g., } \\ 3 N \text {-dimensional for } N \text { particles }\end{array}\right.$
Rewrite as

$$
E_{v}=\int d \vec{x} \frac{\left|\psi_{v}(\vec{x})\right|^{2}}{\left\langle\psi_{v} \mid \psi_{v}\right\rangle} \frac{\hat{H} \psi_{v}(\vec{x})}{\psi_{v}(\vec{x})}
$$

First factor is a probability dist. Sample from this using Markov chain MC.

Importance sampling - Example 2: variational approx.

Variational Quantum Monte Carlo

$$
E_{v}=\int d \vec{x} \frac{\left|\psi_{v}(\vec{x})\right|^{2}}{\left\langle\psi_{v} \mid \psi_{v}\right\rangle} \frac{\hat{H} \psi_{v}(\vec{x})}{\psi_{v}(\vec{x})}
$$

First factor is a probability dist. Sample from this using Markov chain MC.

One of several variants of Quantum Monte Carlo (QMC) techniques used in quantum many-body physics

Monte Carlo for classical statistical physics

Monte Carlo widely used to sample statistical distributions
e.g., thermodynamic properties of polymers, magnetic systems, proteins,

Sample the Boltzmann distribution $\frac{1}{Z} e^{-\beta E(X)}$, where X is system configuration, a many-dimensional variable

Classical statistical physics

Microscopically

Large number of individual degrees of freedom $\left\{p_{i}, q_{i}\right\}, H(p, q)$
Classical evolution is deterministic and reversible
Macroscopically
A few thermodynamical control variables: T, μ, V and bulk thermodynamical properties: $\varepsilon, P, S, \ldots$
Evolution is statistical and irreversible
Statistical physics: bridges micro \leftrightarrow macro
Work with ensembles of microscopic configurations
Probability of configuration $X=\left\{p_{i}, q_{i}\right\}$ is

$$
P(X) \propto e^{-\beta H(X)} \equiv e^{-H(X) / k_{B} T}
$$

Why Monte Carlo?

Only a few systems can be 'solved’ analytically

- simulation is an essential tool

Task

Generate configurations with probability weight $P(X) \propto e^{-\beta H(X)}$

Each value of X represents a state or configuration of the system.
Ideal gas: $H=\sum_{i} \frac{p_{i}^{2}}{2 m} \Longrightarrow P(X)=$ product of gaussians - easy With interactions: not so easy

Common recipe
Construct a series of configurations via a stochastic process

Stochastic processes

This is itself a topic in statistical physics / mathematics / statistics

Unlike deterministic processes, not modelled by usual pde's

Main topic: probability of being in certain states at time t :

- What is $P(x)_{t} \equiv W_{1}(x, t)$ - prob of state x at time t ?
- What is $P\left(x_{t_{1}}, y_{t_{2}}\right) \equiv W_{2}\left(x, t_{1}, y, t_{2}\right)$ - prob of x at t_{1} and y at t_{2} ?
- What is $P\left(x_{t_{1}}, y_{t_{2}}, z_{t_{3}}\right) \equiv W_{3}\left(x, t_{1}, y, t_{2}, z, t_{3}\right)$ etc?
- What is $P\left(y_{t_{2}} \mid x_{t_{1}}\right)$ - prob of getting from x at t_{1} to y at t_{2} ?

Stochastic processes

Examples

- Brownian motion
- Diffusion and drift
- Population dynamics
- Stock markets
- Many-particle systems e.g., Ising model
- Poisson process
- Markov process
- Bernoulli process
- Wiener process
- Lévy process
- Martingale
- Discrete-time random walks
-

Properties of stochastic processes

x, t can be discrete or continuous

$$
\begin{array}{rlrl}
\int W_{1}(x, t) d x & =1 ; & W_{n} & \geq 0 \forall n \\
\int W_{2}\left(x, t_{1}, y, t_{2}\right) d x & =W_{1}\left(y, t_{2}\right) ; \quad \int W_{2}\left(x, t_{1}, y, t_{2}\right) d y & =W_{1}\left(x, t_{2}\right)
\end{array}
$$

x can be either a single number (discrete or continuous), or a collection of numbers representing a configuration.

Properties of stochastic processes

x, t can be discrete or continuous

$$
\begin{aligned}
\int W_{1}(x, t) d x & =1 ; & W_{n} & \geq 0 \forall n \\
\int W_{2}\left(x, t_{1}, y, t_{2}\right) d x & =W_{1}\left(y, t_{2}\right) ; & \int W_{2}\left(x, t_{1}, y, t_{2}\right) d y & =W_{1}\left(x, t_{2}\right)
\end{aligned}
$$

Stationary processes

$$
\begin{aligned}
W_{1}(x, t) & =W_{1}(x)=P(x) \quad \text { independent of } t \\
W_{2}\left(x_{1}, t_{1}, x_{t}, t_{2}\right) & =W_{2}\left(x_{1}, x_{2} ; t_{2}-t_{1}\right)
\end{aligned}
$$

Ergodic processes

If ensemble mean equals time average then the process is ergodic The process will 'visit' all possible states of the system

- every state must be accessible from every other state
- no periodicity

Autocorrelations

Measure the 'memory' of the process:

$$
\begin{aligned}
R_{\phi}\left(t_{1}, t_{2}\right) & \equiv\left\langle\Delta \phi\left(t_{1}\right) \Delta \phi\left(t_{2}\right)\right\rangle=\left\langle\left(\phi\left(t_{1}\right)-\left\langle\phi\left(t_{1}\right)\right\rangle\right)\left(\phi\left(t_{2}\right)-\left\langle\phi\left(t_{2}\right)\right\rangle\right)\right\rangle \\
& =\int\left(\phi\left(x_{1}, t_{1}\right)-\left\langle\phi\left(t_{1}\right)\right\rangle\right)\left(\phi\left(x_{2}, t_{2}\right)-\left\langle\phi\left(t_{2}\right)\right\rangle\right) W_{2}\left(x_{1}, t_{1}, x_{2}, t_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

Here ϕ is a stochastic variable.
For stationary process: $\left\langle\phi\left(t_{1}\right)\right\rangle=\left\langle\phi\left(t_{2}\right)\right\rangle=$ constant

$$
R_{\phi}\left(t_{2}-t_{1}\right)=R_{\phi}(\tau)=\langle\Delta \phi(0) \Delta \phi(\tau)\rangle
$$

Typically $R_{\phi}(\tau) \sim e^{-\tau / \tau_{\phi}}$, where τ_{ϕ} is the autocorrelation time.

Markov processes

Simple(st) stochastic process: uncorrelated random process

$$
W_{2}\left(x_{1}, t_{1}, x_{2}, t_{2}\right)=W_{1}\left(x_{1}, t_{1}\right) W_{2}\left(x_{2}, t_{2}\right) \quad \Longrightarrow \quad R(\tau)=c \delta(\tau)
$$

All information contained in W_{1} 's.

Next simplest: all information is in W_{2} - Markov process
A Markov process is a random process in which the future is independent of the past, given the present.

Markov processes

Define transition probabilities
(for either discrete time and continuous time)

$$
\begin{gathered}
P\left(x_{2} t_{2} \mid x_{1} t_{1}\right) \equiv T\left(x_{1}, t_{1} \rightarrow x_{2}, t_{2}\right) \quad \int P\left(x_{2} t_{2} \mid x_{1} t_{1}\right) d x_{2}=1 \\
W_{2}\left(x_{1}, t_{1}, x_{2}, t_{2}\right)=W_{1}\left(x_{1}, t_{1}\right) P\left(x_{2} t_{2} \mid x_{1} t_{1}\right)
\end{gathered}
$$

All information about dynamics of the process is in T.
Where we go next is independent of how we got there.

We focus on discrete time:

$$
P\left(x_{n} t_{n} \mid x_{n-1} t_{n-1} \ldots x_{1} t_{1}\right)=P\left(x_{n} t_{n} \mid x_{n-1} t_{n-1}\right)
$$

Only the most recent time counts!

Markov processes

Examples of Markov processes

- random walk
- population dynamics

Examples of non-Markov processes

- self-avoiding random walk
- stock markets

Markov chains
With discrete time steps: Markov chain

- need only look at transition probabilities from one time step to next

$$
T\left(X t_{n} \rightarrow Y t_{n+1}\right) \equiv T(X \rightarrow Y)
$$

The Master Equation

Look at probability of being in state X at time $t, P(X, t)$

$$
\begin{aligned}
P\left(X, t_{n+1}\right) & =\sum_{Y} P\left(Y, t_{n}\right) T(Y \rightarrow X) \\
P\left(X, t_{n}\right) & =\sum_{Y} P\left(X, t_{n}\right) T(X \rightarrow Y)
\end{aligned}
$$

Master equation, discrete time

$$
P\left(X, t_{n+1}\right)-P\left(X, t_{n}\right)=\sum_{Y}\left[P\left(Y, t_{n}\right) T(Y \rightarrow X)-P\left(X, t_{n}\right) T(X \rightarrow Y)\right]
$$

Continuous time:

$$
\frac{\partial P(x, t)}{\partial t}=\int[P(y, t) t(y \rightarrow x)-P(x, t) t(x \rightarrow y)] d y
$$

Detailed balance

For a stationary process $P\left(X, t_{n+1}\right)=P\left(X, t_{n}\right)=P(X)$
$\Longrightarrow \quad$ rhs of Master Equation is 0 .

Sufficient condition

$$
P(X) T(X \rightarrow Y)=P(Y) T(Y \rightarrow X) \quad \text { Detailed balance }
$$

If detailed balance is satisfied: Markov chain will follow irreversible process towards stationary distribution (towards equilibrium)

Markov chain Monte Carlo

Use such a process to create configurations X with desired distribution $P(X)$

Design update rule/algorithm (transition probability T) satisfying detailed balance for desired distribution $P(X)$

Summary

Monte Carlo integration

- Via uniform or weighted sampling.
- Importance sampling can drastically improve performance

Markov processes

- A Markov process is a stochastic process with no memory
- Described by transition probabilities
- All Markov processes obey the master equation
- Detailed balance is a sufficient condition for a stationary process

