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Monte Carlo integration – uniform sampling - recap

Monte Carlo integration with uniform sampling

I =

∫
Ω
f (~r)dV ≈ V
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with fi = f (ξi ); ξi are uniformly sampled from Ω.

Error scales as 1/
√
N

Error proportional to
√

variance of function values

Superior to fixed-grid and Gaussian quadrature in high dimensions

Simple to deal with complicated boundaries



Monte Carlo integration – weights, importance sampling

Consider integral I =

∫
Ω
f (~r)dV =

∫
Ω
p(~r)g(~r)dV

p(~r)→ a prob. dist. from which we know how to draw random numbers.

Should be normalized:

∫
Ω
p(~r)dV = 1.

If I1 =

∫
Ω
w(~r)g(~r)dV and w(~r) is not normalized, use appropriate factor:

I1 = cI = c

∫
Ω
p(~r)g(~r)dV with p(~r) =

w(~r)

c
=

w(~r)∫
Ω
w(~r)



Monte Carlo integration – weights, importance sampling

If region is sampled according to distribution p(~r), expectation value of an
observable A(~r) is

〈A〉 =

∫
Ω
p(~r)A(~r)dV

{
Normalized p(x):

no volume factor

Thus

Monte Carlo integration with weighted sampling

I =

∫
Ω
p(~r)g(~r)dV ≈ 1

N

N∑
i=1

gi

with gi = g(ξi ); ξi are sampled with probability p(x).

Error given by
√

variance of g , not of integrand f = pg .



Monte Carlo integration – weights, importance sampling

Monte Carlo integration with weighted sampling

I =

∫
Ω
p(~r)g(~r)dV ≈ 1

N
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with gi = g(ξi ); ξi are sampled with probability p(x).

Error still scales as 1/
√
N

When g(~r) has less variance than full integrand f (~r) = p(~r)g(~r) →
better than uniform sampling — focuses on important regions of Ω.



Importance sampling

If integrand is sharply peaked in
some region, and small in others:

Need high accuracy where f is
big and varying

Dont waste time where it is
close to zero

Sample more points where f is greater. How?

Choose x with probability p(x) so that f (x)/p(x) ≈ constant.

I =

∫
f (x)dx =

∫
p(x)

[
f (x)

p(x)

]
dx ≈ 1

N

N∑
i=1

f (xi )

p(xi )

xi ’s sampled from probability distribution p(x).



Importance sampling — Example 1

I =

∫ 1

0
e−xg(x)dx

Very tempting to use numpy.random.exponential().

Turn e−x into a probability distribution:

I = c

∫ 1

0

[
e−x

c

]
g(x)dx = c

∫ 1

0
p(x)g(x)dx with c =

∫ 1

0
e−xdx =

e − 1

e

How to sample from p(x) ∝ e−x with support (0, 1)?
→ sample from exponential on (0,∞); reject values > 1.

I ≈ c × 1

N

N∑
i=1

g(ξi ) with ξi ’s sampled from p(x)



Importance sampling — Example 2: variational approx.

Variational principle:
apprxomiation (upper bound) to ground state energy of Ĥ given by

Ev =
〈ψv

∣∣Ĥ∣∣ψv 〉
〈ψv

∣∣ψv 〉

{
ψv → variational wavefunction (trial wavefn)

Ev to be minimized over class of trial wavefn’s

Before minimizing, have to calculate Ev first
→ can be a serious computational problem. E.g.,

Ev =
1

〈ψv

∣∣ψv 〉

∫
d~x ψ∗

v (~x) Ĥ ψv (~x)

{
~x could be, e.g.,

3N-dimensional for N particles

Rewrite as

Ev =

∫
d~x

∣∣ψv (~x)
∣∣2

〈ψv

∣∣ψv 〉
Ĥ ψv (~x)

ψv (~x)

First factor is a probability dist. Sample from this using Markov chain MC.



Importance sampling — Example 2: variational approx.

Variational Quantum Monte Carlo

Ev =

∫
d~x

∣∣ψv (~x)
∣∣2

〈ψv

∣∣ψv 〉
Ĥ ψv (~x)

ψv (~x)

First factor is a probability dist. Sample from this using Markov chain MC.

One of several variants of Quantum Monte Carlo (QMC) techniques
used in quantum many-body physics



Monte Carlo for classical statistical physics

Monte Carlo widely used to sample statistical distributions

e.g., thermodynamic properties of polymers, magnetic systems, proteins,
....

Sample the Boltzmann distribution 1
Z e

−βE(X ), where
X is system configuration, a many-dimensional variable



Classical statistical physics

Microscopically

Large number of individual degrees of freedom {pi , qi},H(p, q)
Classical evolution is deterministic and reversible

Macroscopically

A few thermodynamical control variables: T , µ,V
and bulk thermodynamical properties: ε,P, S , . . .
Evolution is statistical and irreversible

Statistical physics: bridges micro ↔ macro

Work with ensembles of microscopic configurations
Probability of configuration X = {pi , qi} is

P(X ) ∝ e−βH(X ) ≡ e−H(X )/kBT

−→ ‘definition’ of temperature



Why Monte Carlo?

Only a few systems can be ‘solved’ analytically
— simulation is an essential tool

Task

Generate configurations with probability weight P(X ) ∝ e−βH(X )

Each value of X represents a state or configuration of the system.

Ideal gas: H =
∑

i
p2
i

2m =⇒ P(X ) = product of gaussians — easy
With interactions: not so easy

Common recipe

Construct a series of configurations via a stochastic process



Stochastic processes

This is itself a topic in statistical physics / mathematics / statistics

Unlike deterministic processes, not modelled by usual pde’s

Main topic: probability of being in certain states at time t:

What is P(x)t ≡W1(x , t) — prob of state x at time t?

What is P(xt1 , yt2) ≡W2(x , t1, y , t2) — prob of x at t1 and y at t2?

What is P(xt1 , yt2 , zt3) ≡W3(x , t1, y , t2, z , t3) etc?

What is P(yt2 |xt1) — prob of getting from x at t1 to y at t2?



Stochastic processes

Examples

Brownian motion

Diffusion and drift

Population dynamics

Stock markets

Many-particle systems
e.g., Ising model

Types

Poisson process

Markov process

Bernoulli process

Wiener process

Lévy process

Martingale

Discrete-time random walks

.....



Properties of stochastic processes

x , t can be discrete or continuous∫
W1(x , t)dx = 1 ; Wn ≥ 0∀n∫

W2(x , t1, y , t2)dx = W1(y , t2) ;

∫
W2(x , t1, y , t2)dy = W1(x , t2)

x can be either a single number (discrete or continuous),
or a collection of numbers representing a configuration.



Properties of stochastic processes
x , t can be discrete or continuous∫

W1(x , t)dx = 1 ; Wn ≥ 0∀n∫
W2(x , t1, y , t2)dx = W1(y , t2) ;

∫
W2(x , t1, y , t2)dy = W1(x , t2)

Stationary processes

W1(x , t) = W1(x) = P(x) independent of t

W2(x1, t1, xt , t2) = W2(x1, x2; t2 − t1)

Ergodic processes

If ensemble mean equals time average then the process is ergodic
The process will ‘visit’ all possible states of the system

every state must be accessible from every other state

no periodicity



Autocorrelations

Measure the ‘memory’ of the process:

Rφ(t1, t2) ≡ 〈∆φ(t1)∆φ(t2)〉 =
〈(
φ(t1)− 〈φ(t1)〉

)(
φ(t2)− 〈φ(t2)〉

)〉
=

∫ (
φ(x1, t1)−〈φ(t1)〉

)(
φ(x2, t2)−〈φ(t2)〉

)
W2(x1, t1, x2, t2)dx1dx2

Here φ is a stochastic variable.

For stationary process: 〈φ(t1)〉 = 〈φ(t2)〉 = constant

Rφ(t2 − t1) = Rφ(τ) =
〈
∆φ(0)∆φ(τ)

〉
Typically Rφ(τ) ∼ e−τ/τφ , where τφ is the autocorrelation time.



Markov processes

Simple(st) stochastic process: uncorrelated random process

W2(x1, t1, x2, t2) = W1(x1, t1)W2(x2, t2) =⇒ R(τ) = cδ(τ)

All information contained in W1’s.

Next simplest: all information is in W2 — Markov process

A Markov process is a random process in which the future is independent
of the past, given the present.



Markov processes

Define transition probabilities
(for either discrete time and continuous time)

P(x2t2|x1t1) ≡ T (x1, t1 → x2, t2)

∫
P(x2t2|x1t1)dx2 = 1

W2(x1, t1, x2, t2) = W1(x1, t1)P(x2t2|x1t1)

All information about dynamics of the process is in T .

Where we go next is independent of how we got there.

We focus on discrete time:

P(xntn|xn−1tn−1 . . . x1t1) = P(xntn|xn−1tn−1)

Only the most recent time counts!



Markov processes

Examples of Markov processes

random walk

population dynamics

Examples of non-Markov processes

self-avoiding random walk

stock markets

Markov chains

With discrete time steps: Markov chain
— need only look at transition probabilities from one time step to next

T (Xtn → Ytn+1) ≡ T (X → Y )



The Master Equation

Look at probability of being in state X at time t, P(X , t)

P(X , tn+1) =
∑
Y

P(Y , tn)T (Y → X )

P(X , tn) =
∑
Y

P(X , tn)T (X → Y )

Master equation, discrete time

P(X , tn+1)− P(X , tn) =
∑
Y

[
P(Y , tn)T (Y → X )− P(X , tn)T (X → Y )

]
Continuous time:

∂P(x , t)

∂t
=

∫ [
P(y , t)t(y → x)− P(x , t)t(x → y)

]
dy



Detailed balance

For a stationary process P(X , tn+1) = P(X , tn) = P(X )
=⇒ rhs of Master Equation is 0.

Sufficient condition

P(X )T (X → Y ) = P(Y )T (Y → X ) Detailed balance

If detailed balance is satisfied: Markov chain will follow irreversible process
towards stationary distribution (towards equilibrium)

Markov chain Monte Carlo

Use such a process to create configurations X
with desired distribution P(X )

Design update rule/algorithm (transition probability T )
satisfying detailed balance for desired distribution P(X )



Summary

Monte Carlo integration

Via uniform or weighted sampling.

Importance sampling can drastically improve performance

Markov processes

A Markov process is a stochastic process with no memory

Described by transition probabilities

All Markov processes obey the master equation

Detailed balance is a sufficient condition for a stationary process
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