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Stochastic processes

Stochastic process

Random process, evolving with ‘time’

More precisely: collection of random variables, Xt , indexed by time

‘Time’ can be continuous or discrete
We only consider discrete time.

−→ t can be thought of as ‘iteration index’ or ‘step’

X −→ single- or multi-dimensional, discrete or continuous
We considered examples where:

- X is a single real variable, for MCMC generation of exponential dist.
- X is a configuration of the Ising model, e.g., ↑↑↓↑↓↑↓↓↑↓.

Study probability of finding particular states at particular times
P(x)t or P(xt) or P(xt) or P(x , t)

May or may not depend on probabilities at prior times.



Stochastic processes

Independent random process

Simplest case. Future probability independent of present or past:

P(xntn|xn−1tn−1 . . . x1t1) = P(xntn)

Completely memory-less. Special case of Markov process.

Markov process

Future probability depends only on present, independent of past:

P(xntn|xn−1tn−1 . . . x1t1) = P(xntn|xn−1tn−1)

Limited memory — Only most recent value counts



Markov processes

Transition probabilities

A Markov chain is described by transition probabilities

T (X → Y ) or TX→Y

When states space is finite:
Can represent as matrix with elements Tij = T (Xi → Xj)

−→ stochastic matrix or transition matrix or Markov matrix



Markov processes: transition graph + transition matrix

102 3 Markov Chain Monte Carlo

be reached from x in one iteration is the neighborhood of x, denoted
by Nx. Each such directed edge has a probability pxy associated with
it. This is the probability that the edge will be chosen on the next
iteration when the chain currently is in the state x.
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Fig. 3.1. The graph representation of a four-state Markov chain. Its corre-
sponding transition matrix is
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The chain starts in some state, say X0, which may be chosen ran-
domly according to a starting distribution or just assigned. From then
on, the chain moves from state to state on each iteration according to
the neighborhood transition probabilities. Given that the chain is in
state x on some iteration, the next state is chosen according to the
discrete density given by {pxy : y ∈ Nx}. Notice that the sum of the
outgoing probabilities from each vertex x must be 1 to cover all the
possible transitions from x,

∑

y∈Nx

pxy = 1, for all x ∈ Ω. (3.1)

The selection is implemented using any of the roulette wheel selection
methods. In the graph, the chain moves along the chosen edge to the
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Transition matrix / stochastic matrix

Row stochastic matrix

Matrix with elements Tij = T (Xi → Xj).

Sum of each row = 1 (system must end up in some state)

Has one eigenvalue exactly =1. All other eigenvalue magnitudes < 1.
→ follows from Perron-Frobenius theorem.

If probabilities of states at
step n is row vector pn, then

pn+1 = pnT

The left eigenvector
corresponding to eigenvalue 1 is
the stationary state

Analogy: power method

Column stochastic matrix: elements Tij = T (Xj → Xi)

Right eigenvectors, column vectors for probability
Row stochastic matrix is more commonly used. :-(



Markov process: Master Equation and Detailed Balance

Master equation

P(X , tn+1)− P(X , tn) =
∑
Y

[
P(Y , tn)TY→X − P(X , tn)TX→Y

]

Derived using:


P(X , tn+1) =

∑
Y

P(Y , tn)TY→X

P(X , tn) = P(X , tn)
∑
Y

TX→Y

Detailed balance — condition for stationary distribution

P(X )T (X → Y ) = P(Y )T (Y → X )

Sufficient, not necessary



Markov chain Monte Carlo

Task

Generate an ergodic Markov chain of configurations which leads to the
stationary distribution P(X ) ∝ exp(−βH(X ))

Main criterion: detailed balance

P(X )T (X → Y ) = P(Y )T (Y → X )

Proposal step and acceptance/rejection step

Write transition probability as T (X → Y ) = ωXYAXY

ωXY = proposal probability Pprop.(Y |X ), satisfies
∑

Y ωXY = 1.

AXY 6= AYX = acceptance probability

1 Propose a move from current state X to another state Y

2 Accept proposal with probability AXY , otherwise stay put at X



Metropolis algorithm

Metropolis

Ensure symmetric proposal probability: ωXY = ωYX

Use acceptance probability

AXY = min

(
1,

P(Y )

P(X )

)
=

{
1 P(X ) ≤ P(Y )
P(Y )
P(X ) P(X ) > P(Y )

Metropolis-Hastings

More general: proposal probability need not be symmetric.
Use acceptance probability

AXY = min

(
1,

P(Y )ωXY

P(X )ωYX

)



Metropolis algorithm

Metropolis

Use symmetric proposal probability: ωXY = ωYX . Acceptance probability

AXY = min

(
1,

P(Y )

P(X )

)
=

{
1 P(X ) ≤ P(Y )
P(Y )
P(X ) P(X ) > P(Y )

Proof of detailed balance

T (X → Y )

T (Y → X )
=
ωXYAXY

ωYXAYX
=

AXY

AYX

If P(X ) ≤ P(Y ) then AXY = 1, AYX = P(X )/P(Y )
If P(X ) > P(Y ) then AXY = P(Y )/P(X ), AYX = 1
In either case

T (X → Y )

T (Y → X )
=

AXY

AYX
=

P(Y )

P(X )
=⇒ detailed balance



Metropolis algorithm

Ergodicity

Depends on ωXY

It must be possible to reach any Y from any X after a series of steps.

Statistical physics

P(X ) ∝ e−βH(X ) =⇒ P(Y )

P(X )
= e−β∆H

Don’t need to know normalization factor Z =
∑

X e−βH(X )

→ partition function, might be impossible to calculate

Metropolis acceptance probabilities for Statistical physics

AXY =

{
1 if H(Y ) ≤ H(X )

e−β∆H if H(Y ) > H(X )



Autocorrelations

Two successive configurations in Markov chain are “close” in phase space
=⇒ any quantity will have similar values on the two configs

If φ is some scalar property, nearby values of φ are correlated.

〈Φ[Xn]Φ[Xn+1]〉 6= 〈Φ[Xn]〉〈Φ[Xn+1]〉 i.e., 6= 〈Φ〉2

Define autocorrelation function:

R(t) = 〈Φ[Xn]Φ[Xn+t ]〉 − 〈Φ[Xn]〉〈Φ[Xn+t ]〉

Nonzero for small t, should vanish for large t.

We want Monte Carlo samples to be statistically independent

Save Φ values spaced from each other along Markov chain.



Autocorrelations

Autocorrelation time τ

R(t) = 〈Φ[Xn]Φ[Xn+t ]〉 − 〈Φ〉2 ∼ Ce−t/τ

τ measures “memory” of the Markov process

Configurations separated by t & 2τ are ≈ statistically independent

How to make τ small? → improved update/proposal schemes
E.g., cluster updates

Autocorrelations increase dramatically near phase transitions
→ critical slowing down

Statistical uncertainties are underestimated if autocorrelations are
ignored



Alternatives to Metropolis

Reminder: Metropolis acceptance probabilities

AXY =

{
1 if H(Y ) ≤ H(X )

e−β∆H if H(Y ) > H(X )

Detailed balance can be satisfied by other acceptance probabilities.

1 Glauber algorithm:

AXY =
1

1 + eβ∆H

2 Heat-bath algorithm



Ising model

Simple model of (anti)ferromagnetism

We have a lattice of spins σi = ±1

H = −J
∑
<ij>

σiσj − B
∑
i

σi ;
∑
<ij>

= sum over nearest neighbours

J > 0: energy minimized by aligning spins → ferromagnet

J < 0: energy minimized by anti-aligning neighboring spins →
antiferromagnet

Magnetic field B > 0: tries to have spins all +1.

Physics depends on lattice: square, cube, triangular, honeycomb,
Kagome, pyrochlore,...



Ising model

Simple model of (anti)ferromagnetism

We have a lattice of spins σi = ±1

H = −J
∑
<ij>

σiσj − B
∑
i

σi ;
∑
<ij>

= sum over nearest neighbours

1D Ising chain: analytically solvable. No phase transitions.

2D Ising on square lattice: B = 0:
“Solvable”, difficult → Onsager solution.
Has a phase transition at T = Tc ≈ 2.2692J

No analytical solution is known for d = 3, for B 6= 0, other lattices.
Many types of interesting physics in different lattices
Even more types of interesting physics in models with continuous
degrees of freedom, e.g., Heisenberg models.
→ Monte Carlo simulations are essential



Phase transition of Ising model
Focus on 2D square lattice, B = 0.

Phase transition

There is a second order phase transition at temperature Tc

Magnetization per site:

µ =
M

num.sites
=

∑
i σi

num.sites

Spontaneous magnetization at low T :

T > Tc : µ = 0

T < Tc : µ 6= 0



Phase transition of 2D Ising model

Second-order Phase transition

2nd-order → µ vanishes continuously

Critical behaviour: with t ≡ (Tc − T )/Tc ,

µ ∼ tβ , χ ∼ t−γ , Cv ∼ (−t)−α

The critical exponents α, β, γ, . . . are universal:
Same behaviour for all systems with the same symmetries and dimensions

χ → susceptibility,
∂M

∂B

∣∣∣∣
B=0

Cv → spec. heat,
∂H

∂T



Phase transition of 2D Ising model

Second-order Phase transition

Critical behaviour: with t ≡ (Tc − T )/Tc ,

µ ∼ tβ , χ ∼ t−γ , Cv ∼ (−t)−α

2D Ising universality class:

γ = 7/4
Susceptibility diverges at critical
point!

α = 0, but specific heat also
diverges → logarithmic divergence.

finite-size

Actual divergence only seen in infinite-size system.



Simulation of Ising model

Metropolis algorithm

1 Start with all σi = 1 (cold start) or random ±1 (hot start)

2 Sweep through all sites of lattice successively.
(Or pick a site at random at each step.)
For each site:

I Calculate the energy difference ∆E if you flip that spin σi → −σi
I If ∆E < 0 flip the spin
I otherwise generate a uniform random r ∈ (0, 1),

flip the spin if r < e−β∆E

3 Compute + save physical quantities (µ,E etc)
maybe only every m-th step to minimize correlations

4 Repeat for N sweeps



Simulation results

T ≈ 0.9Tc



Simulation results

T ≈ Tc



Simulation results

T ≈ 1.13Tc



Simulation results

T ≈ 1.6Tc



Finite volume issues

Boundary conditions

We want to study a macroscopic (nearly infinite) system

the finite system we simulate is only a subsample of this

use periodic boundary conditions to mimic surroundings

No phase transitions on a finite volume

All thermodynamic functions on finite V are smooth functions of T .

Not insurmountable: use finite volume scaling

As V grows the crossover becomes sharper

Extrapolate to 1/V = 0

There are critical exponents for finite volume scaling



Summary

Markov processes

A Markov process is a stochastic process with no memory

Described by transition probabilities

All Markov processes obey the master equation

Detailed balance is a sufficient condition for a stationary process

Markov chain Monte Carlo

Use an ergodic Markov chain to create a statistical distribution of
configurations

Metropolis: all-purpose algorithm for Monte Carlo simulations

Application to statistical physics (condensed matter) systems
eg Ising model

Autocorrelations need to be monitored
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