Overview of slides 04

(1) Stochastic processes, in particular Markov processes

- Stochastic processes
- Stochastic matrix / transition matrix
(2) Markov chain Monte Carlo
- Metropolis algorithm
- Autocorrelations
- Alternatives to Metropolis
(3) Ising model
- Overview
- Phase transition \& critical phenomena
- Simulation
(4) Summary

Stochastic processes

Stochastic process

- Random process, evolving with 'time'
- More precisely: collection of random variables, X_{t}, indexed by time
- 'Time' can be continuous or discrete We only consider discrete time.
$\longrightarrow t$ can be thought of as 'iteration index' or 'step'
- $X \longrightarrow$ single- or multi-dimensional, discrete or continuous We considered examples where:
- X is a single real variable, for MCMC generation of exponential dist.
- X is a configuration of the Ising model, e.g., $\uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$.
- Study probability of finding particular states at particular times $P(x)_{t}$ or $P\left(x_{t}\right)$ or $P(x t)$ or $P(x, t)$
May or may not depend on probabilities at prior times.

Stochastic processes

Independent random process

Simplest case. Future probability independent of present or past:

$$
P\left(x_{n} t_{n} \mid x_{n-1} t_{n-1} \ldots x_{1} t_{1}\right)=P\left(x_{n} t_{n}\right)
$$

Completely memory-less.
Special case of Markov process.

Markov process

Future probability depends only on present, independent of past:

$$
P\left(x_{n} t_{n} \mid x_{n-1} t_{n-1} \ldots x_{1} t_{1}\right)=P\left(x_{n} t_{n} \mid x_{n-1} t_{n-1}\right)
$$

Limited memory - Only most recent value counts

Markov processes

Transition probabilities

A Markov chain is described by transition probabilities

$$
T(X \rightarrow Y) \quad \text { or } \quad T_{X \rightarrow Y}
$$

When states space is finite:
Can represent as matrix with elements $T_{i j}=T\left(X_{i} \rightarrow X_{j}\right)$
\longrightarrow stochastic matrix or transition matrix or Markov matrix

Markov processes: transition graph + transition matrix

Fig. 3.1. The graph representation of a four-state Markov chain. Its corresponding transition matrix is

$$
\left[\begin{array}{cccc}
p_{11} & p_{12} & 0 & p_{14} \\
p_{21} & 0 & p_{23} & 0 \\
p_{31} & 0 & 0 & p_{34} \\
0 & 0 & p_{43} & p_{44}
\end{array}\right] .
$$

Transition matrix / stochastic matrix

Row stochastic matrix

Matrix with elements $T_{i j}=T\left(X_{i} \rightarrow X_{j}\right)$.
Sum of each row $=1 \quad$ (system must end up in some state)
Has one eigenvalue exactly $=1$. All other eigenvalue magnitudes <1. \rightarrow follows from Perron-Frobenius theorem.

If probabilities of states at step n is row vector p_{n}, then

$$
p_{n+1}=p_{n} T
$$

The left eigenvector corresponding to eigenvalue 1 is the stationary state

Analogy: power method

Column stochastic matrix: elements $T_{i j}=T\left(X_{j} \rightarrow X_{i}\right)$
Right eigenvectors, column vectors for probability
Row stochastic matrix is more commonly used. :-(

Markov process: Master Equation and Detailed Balance

Master equation

$$
P\left(X, t_{n+1}\right)-P\left(X, t_{n}\right)=\sum_{Y}\left[P\left(Y, t_{n}\right) T_{Y \rightarrow X}-P\left(X, t_{n}\right) T_{X \rightarrow Y}\right]
$$

Derived using:

$$
\left\{\begin{aligned}
P\left(X, t_{n+1}\right) & =\sum_{Y} P\left(Y, t_{n}\right) T_{Y \rightarrow X} \\
P\left(X, t_{n}\right) & =P\left(X, t_{n}\right) \sum_{Y} T_{X \rightarrow Y}
\end{aligned}\right.
$$

Detailed balance - condition for stationary distribution

$$
P(X) T(X \rightarrow Y)=P(Y) T(Y \rightarrow X)
$$

Sufficient, not necessary

Markov chain Monte Carlo

Task

Generate an ergodic Markov chain of configurations which leads to the stationary distribution $P(X) \propto \exp (-\beta H(X))$

Main criterion: detailed balance

$$
P(X) T(X \rightarrow Y)=P(Y) T(Y \rightarrow X)
$$

Proposal step and acceptance/rejection step
Write transition probability as $T(X \rightarrow Y)=\omega_{X Y} A_{X Y}$

- $\omega_{X Y}=$ proposal probability $P_{\text {prop. }}(Y \mid X), \quad$ satisfies $\quad \sum_{Y} \omega_{X Y}=1$.
- $A_{X Y} \neq A_{Y X}=$ acceptance probability
(1) Propose a move from current state X to another state Y
(2) Accept proposal with probability $A_{X Y}$, otherwise stay put at X

Metropolis algorithm

Metropolis

Ensure symmetric proposal probability: $\omega_{X Y}=\omega_{Y X}$ Use acceptance probability

$$
A_{X Y}=\min \left(1, \frac{P(Y)}{P(X)}\right)= \begin{cases}1 & P(X) \leq P(Y) \\ \frac{P(Y)}{P(X)} & P(X)>P(Y)\end{cases}
$$

Metropolis-Hastings

More general: proposal probability need not be symmetric. Use acceptance probability

$$
A_{X Y}=\min \left(1, \frac{P(Y) \omega_{X Y}}{P(X) \omega_{Y X}}\right)
$$

Metropolis algorithm

Metropolis

Use symmetric proposal probability: $\omega_{X Y}=\omega_{Y X}$. Acceptance probability

$$
A_{X Y}=\min \left(1, \frac{P(Y)}{P(X)}\right)= \begin{cases}1 & P(X) \leq P(Y) \\ \frac{P(Y)}{P(X)} & P(X)>P(Y)\end{cases}
$$

Proof of detailed balance

$$
\frac{T(X \rightarrow Y)}{T(Y \rightarrow X)}=\frac{\omega_{X Y} A_{X Y}}{\omega_{Y X} A_{Y X}}=\frac{A_{X Y}}{A_{Y X}}
$$

If $P(X) \leq P(Y)$ then $A_{X Y}=1, \quad A_{Y X}=P(X) / P(Y)$ If $P(X)>P(Y)$ then $A_{X Y}=P(Y) / P(X), \quad A_{Y X}=1$ In either case

$$
\frac{T(X \rightarrow Y)}{T(Y \rightarrow X)}=\frac{A_{X Y}}{A_{Y X}}=\frac{P(Y)}{P(X)} \quad \Longrightarrow \text { detailed balance }
$$

Metropolis algorithm

Ergodicity

Depends on $\omega_{X Y}$
It must be possible to reach any Y from any X after a series of steps.

Statistical physics

$$
P(X) \propto e^{-\beta H(X)} \Longrightarrow \frac{P(Y)}{P(X)}=e^{-\beta \Delta H}
$$

Don't need to know normalization factor $Z=\sum_{X} e^{-\beta H(X)}$ \rightarrow partition function, might be impossible to calculate

Metropolis acceptance probabilities for Statistical physics

$$
A_{X Y}= \begin{cases}1 & \text { if } H(Y) \leq H(X) \\ e^{-\beta \Delta H} & \text { if } H(Y)>H(X)\end{cases}
$$

Autocorrelations

Two successive configurations in Markov chain are "close" in phase space \Longrightarrow any quantity will have similar values on the two configs

If ϕ is some scalar property, nearby values of ϕ are correlated.

$$
\left\langle\Phi\left[X_{n}\right] \Phi\left[X_{n+1}\right]\right\rangle \neq\left\langle\Phi\left[X_{n}\right]\right\rangle\left\langle\Phi\left[X_{n+1}\right]\right\rangle \quad \text { i.e., } \quad \neq\langle\Phi\rangle^{2}
$$

Define autocorrelation function:

$$
R(t)=\left\langle\Phi\left[X_{n}\right] \Phi\left[X_{n+t}\right]\right\rangle-\left\langle\Phi\left[X_{n}\right]\right\rangle\left\langle\Phi\left[X_{n+t}\right]\right\rangle
$$

Nonzero for small t, should vanish for large t.
We want Monte Carlo samples to be statistically independent Save Φ values spaced from each other along Markov chain.

Autocorrelations

Autocorrelation time τ

$$
R(t)=\left\langle\Phi\left[X_{n}\right] \Phi\left[X_{n+t}\right]\right\rangle-\langle\Phi\rangle^{2} \sim C e^{-t / \tau}
$$

τ measures "memory" of the Markov process
Configurations separated by $t \gtrsim 2 \tau$ are \approx statistically independent

- How to make τ small? \rightarrow improved update/proposal schemes E.g., cluster updates
- Autocorrelations increase dramatically near phase transitions \rightarrow critical slowing down
- Statistical uncertainties are underestimated if autocorrelations are ignored

Alternatives to Metropolis

Reminder: Metropolis acceptance probabilities

$$
A_{X Y}= \begin{cases}1 & \text { if } H(Y) \leq H(X) \\ e^{-\beta \Delta H} & \text { if } H(Y)>H(X)\end{cases}
$$

Detailed balance can be satisfied by other acceptance probabilities.
(1) Glauber algorithm:

$$
A_{X Y}=\frac{1}{1+e^{\beta \Delta H}}
$$

(2) Heat-bath algorithm

Ising model

Simple model of (anti)ferromagnetism

We have a lattice of spins $\sigma_{i}= \pm 1$

$$
H=-J \sum_{<i j>} \sigma_{i} \sigma_{j}-B \sum_{i} \sigma_{i} ; \quad \sum_{<i j\rangle}=\text { sum over nearest neighbours }
$$

- $J>0$: energy minimized by aligning spins \rightarrow ferromagnet
- $J<0$: energy minimized by anti-aligning neighboring spins \rightarrow antiferromagnet
- Magnetic field $B>0$: tries to have spins all +1 .
- Physics depends on lattice: square, cube, triangular, honeycomb, Kagome, pyrochlore,...

Ising model

Simple model of (anti)ferromagnetism

We have a lattice of spins $\sigma_{i}= \pm 1$
$H=-J \sum_{<i j>} \sigma_{i} \sigma_{j}-B \sum_{i} \sigma_{i} ; \quad \sum_{<i j>}=$ sum over nearest neighbours

- 1D Ising chain: analytically solvable. No phase transitions.
- 2D Ising on square lattice: $B=0$:
"Solvable", difficult \rightarrow Onsager solution. Has a phase transition at $T=T_{c} \approx 2.2692 \mathrm{~J}$
- No analytical solution is known for $d=3$, for $B \neq 0$, other lattices. Many types of interesting physics in different lattices Even more types of interesting physics in models with continuous degrees of freedom, e.g., Heisenberg models.
\rightarrow Monte Carlo simulations are essential

Phase transition of Ising model

Focus on 2D square lattice, $B=0$.

Phase transition

There is a second order phase transition at temperature T_{c}

Magnetization per site:

$$
\mu=\frac{M}{\text { num.sites }}=\frac{\sum_{i} \sigma_{i}}{\text { num.sites }}
$$

Spontaneous magnetization at low T :

$$
\begin{aligned}
& T>T_{c}: \mu=0 \\
& T<T_{c}: \mu \neq 0
\end{aligned}
$$

Phase transition of 2D Ising model

Second-order Phase transition

2nd-order $\rightarrow \mu$ vanishes continuously
Critical behaviour: with $t \equiv\left(T_{c}-T\right) / T_{c}$,

$$
\mu \sim t^{\beta}, \quad \chi \sim t^{-\gamma}, \quad C_{v} \sim(-t)^{-\alpha}
$$

The critical exponents $\alpha, \beta, \gamma, \ldots$ are universal:
Same behaviour for all systems with the same symmetries and dimensions
$\chi \rightarrow$ susceptibility, $\left.\frac{\partial M}{\partial B}\right|_{B=0} \quad C_{v} \rightarrow$ spec. heat, $\frac{\partial H}{\partial T}$

Phase transition of 2D Ising model

Second-order Phase transition

Critical behaviour: with $t \equiv\left(T_{c}-T\right) / T_{c}$,

$$
\mu \sim t^{\beta}, \quad \chi \sim t^{-\gamma}, \quad C_{v} \sim(-t)^{-\alpha}
$$

2D Ising universality class:
$\gamma=7 / 4$
Susceptibility diverges at critical point!
$\alpha=0$, but specific heat also diverges \rightarrow logarithmic divergence.

Actual divergence only seen in infinite-size system.

Simulation of Ising model

Metropolis algorithm

(1) Start with all $\sigma_{i}=1$ (cold start) or random ± 1 (hot start)
(2) Sweep through all sites of lattice successively.
(Or pick a site at random at each step.)
For each site:
Calculate the energy difference ΔE if you flip that spin $\sigma_{i} \rightarrow-\sigma_{i}$ If $\Delta E<0$ flip the spin otherwise generate a uniform random $r \in(0,1)$, flip the spin if $r<e^{-\beta \Delta E}$
(3) Compute + save physical quantities (μ, E etc) maybe only every m-th step to minimize correlations
(9) Repeat for N sweeps

Simulation results

$T \approx 0.9 T_{c}$

Simulation results

$$
T \approx T_{c}
$$

Simulation results

$T \approx 1.13 T_{c}$

Simulation results

```
T\approx1.6 Tc
```


Finite volume issues

Boundary conditions

We want to study a macroscopic (nearly infinite) system

- the finite system we simulate is only a subsample of this
- use periodic boundary conditions to mimic surroundings

No phase transitions on a finite volume
All thermodynamic functions on finite V are smooth functions of T.
Not insurmountable: use finite volume scaling

- As V grows the crossover becomes sharper
- Extrapolate to $1 / V=0$
- There are critical exponents for finite volume scaling

Summary

Markov processes

- A Markov process is a stochastic process with no memory
- Described by transition probabilities
- All Markov processes obey the master equation
- Detailed balance is a sufficient condition for a stationary process

Markov chain Monte Carlo

- Use an ergodic Markov chain to create a statistical distribution of configurations
- Metropolis: all-purpose algorithm for Monte Carlo simulations
- Application to statistical physics (condensed matter) systems eg Ising model
- Autocorrelations need to be monitored

