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Stochastic processes

Stochastic process

@ Random process, evolving with ‘time’
@ More precisely: collection of random variables, X;, indexed by time

@ ‘Time’ can be continuous or discrete
We only consider discrete time.
— t can be thought of as ‘iteration index’ or ‘step’

@ X — single- or multi-dimensional, discrete or continuous
We considered examples where:

- X is a single real variable, for MCMC generation of exponential dist.
- X is a configuration of the Ising model, e.g., TTI T

Study probability of finding particular states at particular times
P(x): or P(x¢) or P(xt) or P(x,t)
May or may not depend on probabilities at prior times.




Stochastic processes

Independent random process

Simplest case. Future probability independent of present or past:
P(Xntn|Xn_1t,7_1 e X1t1) = P(Xntn)

Completely memory-less. Special case of Markov process.

Markov process

Future probability depends only on present, independent of past:

P(Xntn|Xn_1t,,_1 ... X1t1) = P(Xntn’Xn_ltn_l)

Limited memory — Only most recent value counts




Markov processes

Transition probabilities
A Markov chain is described by transition probabilities

T(X—) Y) or TX—>Y

When states space is finite:
Can represent as matrix with elements T;; = T(X; — X;)

—— stochastic matrix or transition matrix or Markov matrix




Markov processes: transition graph + transition matrix

P11

Shonkwiler & Mendivil
Explorations in Monte Carlo Methods

Fig. 3.1. The graph representation of a four-state Markov chain. Its corre-
sponding transition matrix is

pi1 pi2 0 pug

pa1 0 paz O

psi 0 0 p3g
0 0 paz pu



Transition matrix / stochastic matrix

Row stochastic matrix

Matrix with elements Tj;; = T(X; — Xj).

Sum of each row = 1  (system must end up in some state)

Has one eigenvalue exactly =1. All other eigenvalue magnitudes < 1.

— follows from Perron-Frobenius theorem.

The left eigenvector
corresponding to eigenvalue 1 is
the stationary state

If probabilities of states at
step n is row vector p,, then

Pny1=pnT Analogy: power method

Column stochastic matrix: elements Tj; = T(X; — X))

Right eigenvectors, column vectors for probability
Row stochastic matrix is more commonly used. :-(




Markov process: Master Equation and Detailed Balance

Master equation

P(X ta11) = P(X,ta) = 3 [P(Y, ) Tyoox = P(X; ta) T
Y

P(X,tar1) = Y P(Y, ta) Tyox
Y

Derived using:
P(X,t)) = P(X,ts) Y Txoy
Y

Detailed balance — condition for stationary distribution

PX)T(X—=Y)=P(Y)T(Y — X)

Sufficient, not necessary




Markov chain Monte Carlo

Task

Generate an ergodic Markov chain of configurations which leads to the
stationary distribution P(X) o exp(—BH(X))

Main criterion: detailed balance

PX)T(X = Y)=P(Y)T(Y — X)

Proposal step and acceptance/rejection step

Write transition probability as T(X — Y) = wxyAxy
@ wxy = proposal probability Pprop. (Y|X), satisfies » y wxy = 1.
o Axy # Ayx = acceptance probability
@ Propose a move from current state X to another state Y

© Accept proposal with probability Axy, otherwise stay put at X




Metropolis algorithm

Metropolis

Ensure symmetric proposal probability: wxy = wyx
Use acceptance probability

" (1, M) _ {1 P(X) < P(Y)

P(X) pod P(X) > P(Y)

Metropolis-Hastings

More general: proposal probability need not be symmetric.
Use acceptance probability

Axy = min (17 %)




Metropolis algorithm

Metropolis

Use symmetric proposal probability: wxy = wyx. Acceptance probability

_ (PO _ [1 o POOSP(Y)
e =min (1. 25 ) {';g;; P(X) > P(Y)

Proof of detailed balance
T(X—=Y) wxyAxy _ Axy

T(Y - X)  wyxAyx Ayx
If P(X) < P(Y) then Axy =1, Ayx = P(X)/P(Y)
If P(X) > P(Y) then Axy = P(Y)/P(X), Ayx =1
In either case

T(X—=Y) Axy P(Y)

T(Y > X) = Avx P(X) — detailed balance




Metropolis algorithm
Ergodicity
Depends on wxy

It must be possible to reach any Y from any X after a series of steps.

Statistical physics

_ P(Y) _
BH(X) _ —BAH
P(X) x e = PIX) ~ e

Don’t need to know normalization factor Z =73 g PeS)
— partition function, might be impossible to calculate

Metropolis acceptance probabilities for Statistical physics

Pt if H(Y) < H(X)
XY T e BAH i H(Y) > H(X)




Autocorrelations

Two successive configurations in Markov chain are “close” in phase space
= any quantity will have similar values on the two configs

If ¢ is some scalar property, nearby values of ¢ are correlated.

(O[Xa]®[Xns1]) Z (O[Xal)(®[Xnya]) e, # (9)?

Define autocorrelation function:

R(t) = <¢[Xn]¢[xn+t]> - <¢[Xn]><¢[Xn+t]>

Nonzero for small t, should vanish for large t.
We want Monte Carlo samples to be statistically independent

Save ® values spaced from each other along Markov chain.



Autocorrelations

Autocorrelation time 7
R(t) = (O[Xn]®[Xnse]) — (®)2 ~ CeH/7

T measures “memory” of the Markov process

Configurations separated by t = 27 are & statistically independent

@ How to make 7 small? — improved update/proposal schemes
E.g., cluster updates

@ Autocorrelations increase dramatically near phase transitions
— critical slowing down

@ Statistical uncertainties are underestimated if autocorrelations are
ignored



Alternatives to Metropolis

Reminder: Metropolis acceptance probabilities

P if H(Y) < H(X)
XY T ) e BAH i H(Y) > H(X)

Detailed balance can be satisfied by other acceptance probabilities.

@ Glauber algorithm:
1

AXY = T ooaA
@ Heat-bath algorithm



Ising model

Simple model of (anti)ferromagnetism

We have a lattice of spins g; = +1

H=-—J g oioj— B E oi; g = sum over nearest neighbours
<ij> i <ij>

@ J > 0: energy minimized by aligning spins — ferromagnet

o J < 0: energy minimized by anti-aligning neighboring spins —
antiferromagnet

@ Magnetic field B > 0: tries to have spins all +1.

@ Physics depends on lattice: square, cube, triangular, honeycomb,
Kagome, pyrochlore,...



Ising model

Simple model of (anti)ferromagnetism

We have a lattice of spins o; = +1

H=-J E oioj— B E oj; g = sum over nearest neighbours
<ij> i <ij>

@ 1D Ising chain: analytically solvable. No phase transitions.

@ 2D Ising on square lattice: B = 0:
“Solvable”, difficult — Onsager solution.
Has a phase transition at T = T, ~ 2.2692J

@ No analytical solution is known for d = 3, for B # 0, other lattices.
Many types of interesting physics in different lattices
Even more types of interesting physics in models with continuous
degrees of freedom, e.g., Heisenberg models.
— Monte Carlo simulations are essential



Phase transition of Ising model

Focus on 2D square lattice, B = 0.
Phase transition

There is a second order phase transition at temperature T,

Magnetization per site: Spontaneous magnetization at low T:

Mo Y T>T. pu=0

o= num.sites  num.sites T<Tep#0




Phase transition of 2D Ising model

Second-order Phase transition
2nd-order — p vanishes continuously

Critical behaviour: with t = (T, — T)/ T,

p~t? x~tT, G~ (—t)

The critical exponents «, 3,7, ... are universal:
Same behaviour for all systems with the same symmetries and dimensions

— susceptibilit 8—M C, — spec. heat ol




Phase transition of 2D Ising model

Second-order Phase transition
Critical behaviour: with t = (T, — T)/ T,

p~tf, x~tT7, G~ ()0

LA

2D Ising universality class:

y=T/4
Susceptibility diverges at critical
point!

«a = 0, but specific heat also
diverges — logarithmic divergence.

Actual divergence only seen in infinite-size system.




Simulation of Ising model

Metropolis algorithm
© Start with all o; =1 (cold start) or random £1 (hot start)

@ Sweep through all sites of lattice successively.
(Or pick a site at random at each step.)
For each site:
Calculate the energy difference AE if you flip that spin 0; — —0;
If AE < 0 flip the spin
otherwise generate a uniform random r € (0, 1),
flip the spin if r < e PAE

© Compute + save physical quantities (u, E etc)
maybe only every m-th step to minimize correlations

@ Repeat for N sweeps




Simulation results

0 100 200 300 400 SO0 600 700 800 900 1000



Simulation results
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Simulation results
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Simulation results
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Finite volume issues

Boundary conditions
We want to study a macroscopic (nearly infinite) system
@ the finite system we simulate is only a subsample of this

@ use periodic boundary conditions to mimic surroundings

No phase transitions on a finite volume
All thermodynamic functions on finite V' are smooth functions of T.
Not insurmountable: use finite volume scaling

@ As V grows the crossover becomes sharper

@ Extrapolate to 1/V =0

@ There are critical exponents for finite volume scaling




Summary

Markov processes
@ A Markov process is a stochastic process with no memory
@ Described by transition probabilities
@ All Markov processes obey the master equation
°

Detailed balance is a sufficient condition for a stationary process

Markov chain Monte Carlo

@ Use an ergodic Markov chain to create a statistical distribution of
configurations

@ Metropolis: all-purpose algorithm for Monte Carlo simulations

@ Application to statistical physics (condensed matter) systems
eg Ising model

@ Autocorrelations need to be monitored
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