
Overview of slides 05

1 MCMC for Classical Stat. Phys.
Metropolis algorithm
Alternatives and improvements to Metropolis
The heat bath algorithm
Other Stat.Phys. systems

2 Minimisation
One-dimensional minimisation
Downhill Simplex (Nelder-Mead) algorithm
Direction set methods in many dimensions
Global minimisation, simulated annealing
Summary

Metropolis algorithm

Recap: Markov chain Monte Carlo

Generate ergodic Markov chain of configurations with Botzmann
distribution P(X) ∝ exp(−βH(X)), using detailed balance:

P(X)TX→Y = P(Y)TY→X

Decompose transition probability: TX→Y = ωXYAXY

ωXY = ωYX = proposal probability,
∑

Y ωXY = 1.

AXY 6= AYX = acceptance probability

Metropolis algorithm

Ensure symmetric proposal probability: ωXY = ωYX

Use acceptance probability

AXY = min

(
1,

P(Y)

P(X)

)
=

{
1 P(X) ≤ P(Y)
P(Y)
P(X) P(X) > P(Y)

Alternatives and improvements

Metropolis acceptance probability, AXY = min (1, P(Y)/P(X)), ensures
detailed balance. But detailed balance can be satisfied by other
acceptance probabilities for local updates:

Glauber algorithm: AXY =
1

1 + eβ∆H

{
Exercise! show that
detailed balance is

satisfied

Heat-bath algorithm (next)

Optimization of heat-bath: Overrelaxation

and also for cluster updates:

Swendsen-Wang algorithm (1987)

Wolff algorithm (1989)

The heat bath algorithm
Like Metropolis, another local update algorithm
Local value x is updated according to Boltzmann probabilities:

- independent of current value of x , but

- depending on current state of rest of system.

Algorithm

We update only a few degrees of freedom (eg single site) at a time.
Call these x ; the surrounding ‘environment’ (rest of system) is Xrx
Choose new x randomly with distribution

P(x) ∝ e−βH(x |Xrx)

The new x does not depend on the old x , only on old Xrx .

For Ising, heat bath ≡ Glauber. Show!

Less efficient than Metropolis for Ising.
Wins when system has more local degrees of freedom, e.g. Potts.

Proof of detailed balance

We write X = {x ,Xrx};Y = {y ,Xrx} ≡ {y ,Yry}.
The transition probability is then given by

T (X → Y) =
1

Z
e−βH(y |Xrx) = P(y |Xrx) .

Using Bayes’ theorem P(A,B) = P(A|B)P(B) we hence have

P(X)T (X → Y) = P(x ,Xrx)P(y |Xrx)

= P(x |Xrx)P(Xrx)P(y |Xrx) ,

P(Y)T (Y → X) = P(y ,Xrx)P(x |Xrx)

= P(y |Xrx)P(Xrx)P(x |Xrx) ,

and we see the two expressions are the same.

Error estimates

Monte Carlo calculations lead to stochastic estimates

Always provide an estimation of the error, if at all possible.

Error of estimate of a mean, using N samples:
st.dev.√

N

Beyond Ising
Other classical models of magnetism, often simulated by Monte Carlo:

Potts model: each spin has q degrees of freedom (‘states’).

βHPotts = −J
∑
〈ij〉

δ(si , sj)− B
∑
i

si

{
si takes values

∈ {1, 2, 3, . . . q}

clock model or vector Potts model: si ’s interpreted as spin vector
pointing at different angles:

θn =
2πn

q
, Hclock = Jc

∑
(i ,j)

cos
(
θsi − θsj

)
XY model: The spins are 2D vectors of fixed size, hence defined by
one angle:

HXY = −
∑
〈ij〉

~Si · ~Sj = −
∑
〈ij〉

cos(θi − θj)

Heisenberg model: The spins are 3D vectors of fixed size.

Beyond magnetism

MCMC widely used for thermodynamics, also for non-magnetic systems

Lennard-Jones fluid: particles, pairwise interacting:

βHLJ ∝
(σ
r

)12
−
(σ
r

)6

For randomly selected particle, move to
new position is proposed.
Accepted/rejected via Metropolis rule. Possible liquid-gas phase

transition

Polymers, e.g., proteins. Monomers, mutually attracting or repelling.

Competing technique: molecular dynamics:

Solve Newton’s laws directly for each particle

Add artificial ‘heat bath’ to achieve thermal equilibrium

Quantum statistical physics

Quantum many-body problem (a.k.a. quantum condensed matter physics)
is computationally challenging:

Hilbert space dimension grows exponentially

Among available computational methods, there are many different types of
quantum Monte Carlo →

Variational Monte Carlo

Diffusion Monte Carlo

Path integral Monte Carlo

Green’s function Monte Carlo

Auxiliary-field Monte Carlo

Determinant Monte Carlo

World-line Monte Carlo

.......

Done with Monte Carlo methods

Next chapter: MINIMIZATION / OPTIMIZATION

Minimisation

Physical problems might involve minimizing or maximizing some
quantity (energy, free energy, action etc)

I Example: variational methods for approximating complex quantum
systems. E.g., minimize the multivariable function

Ev (α1, α2, . . . , αN) =

∫
d~x

∣∣ψ({αi};~x)
∣∣2

〈ψ
∣∣ψ〉 Ĥ ψ({αi};~x)

ψ({αi};~x)

Data fitting = minimising χ2, “loss function” of model parameters

I Modern machine learning ≈ multi-dimensional minimization

Other problems may be rewritten as minimisation
I matrix equation Ax = b ⇔ minimise f (x) = 1

2x
TAx − xTb

Minimisation

Many, many, many algorithms

Textbooks titled ‘Optimization’, ‘Nonlinear programming’,
‘Operations Research’

These slides: partly based on Numerical Recipes chap 10
(peruse for details)

Constrained vs Unconstrained

General N-dimensional problem

f , gi , hi are scalar functions of N variables ~x = (x1, x2, . . . , xN)

Want to minimize f (~x)

{
subject to inequalities gi (~x) > 0

and equalities hi (~x) = 0

Maximization is the same problem: minimize −f (~x)

Linear programming, quadratic programming, nonlinear programming:
when f , gi , hi are linear/quadratic/ nonlinear functions

Example of constraint:
for variational wavefunction e−ax

2
, may want a > 0

We focus on unconstrained minimization.
Constraints unimportant or expected to be automatically satisfied.

One dimension vs many dimensions

Univariate minimization

Find value of x where f (x) is minimum.

Use values of f (x) at various x .

Perhaps also use first and second derivatives, f ′(x) and f ′′(x).

Multivariate minimization

Find point in multi-dimensional ~x-space where f (~x) is minimum.

Use values of f (~x), possibly also the gradients ∇f (~x) (1st derivatives)

and Hessian matrix
∂2f

∂xi∂xj
(2nd derivatives).

Nowadays, millions of dimensions might be common.
“Curse of dimensionality”

Minimisation

Typical issues

Want to evaluate f as few times as possible

Derivatives of f may not be possible/cheap to evaluate

Local versus global

Local minima vs global minimum

Local minimum: in principle always possible
I Go downhill till you start going uphill again

Global minimum: extremely hard
I May have ragged function with very many local minima
I How sure can we be that we have found the minimum?

We will mainly discuss local minimization.

Some minimisation algorithms

1 dimension: analogy to root finding

Equivalent of bracketing a root: Bracketing a minimum
requires 3 points a < b < c : f (b) < f (a) & f (b) < f (c)

Equivalent of bisection: Golden section [NR 10.1]

Equivalent of false position: Parabolic interpolation / Brent [NR 10.2]

Newton iteration for f ′(x) instead of f (x)

Many dimensions

Simplex: requires no knowledge of derivatives [NR 10.4]

Direction set methods: minimise successively in different directions
I Succession of 1D problems: line search or line minimization)
I Important issue: Choice of directions

Gradient descent

quasi-Newton methods

1-dimensional minimisation

Minimizing single-variable functions

Grid search or uniform search

If function evaluation is cheap, just evaluate the function on a fine grid
(e.g., plot the function).

Look for the minimum value.

Done.

Golden section

Bisection: After bracketing a root, subdivide the interval in halves until we
have zoomed in on the root.

Bracketing a minimum involves finding three points.
What is the optimal way of subdividing an interval in three?

Assume we have three points a < b < c
such that a− b < b − c and

b − a

c − a
= w ,

c − b

c − a
= 1− w . a cb

We choose a new point m a fraction z into the (larger) interval 〈b, c〉,

m − b

c − b
= z . a cb

m

The minimum is now bracketed either by (a, b,m) or by (b,m, c).

Golden section (1-dimensional minimisation)
What is the optimal way of subdividing an interval in three?

b − a

c − a
= w ,

c − b

c − a
= 1− w . a cb

We choose a new point m a fraction z into the (larger) interval 〈b, c〉,

m − b

c − b
= z . a cb

m

The minimum is now bracketed either by (a, b,m) or by (b,m, c).

Golden section

Choose x − a = c − b (possible new intervals equal)
and w = z (subdivision ratio unchanged)

=⇒ w2 − 3w + 1 = 0 =⇒

{
w = 3−

√
5

2 ≈ 0.38197

1− w =
√

5−1
2 ≈ 0.61803

Parabolic interpolation + Brent’s method

Like bisection, golden section ignores the values of the function, ie how
close you are to the minimum.
The simplest way of estimating the position of the minimum is
fit the three points to a parabola, f (x) = Ax2 + Bx + C

Aa2 + Ba + C = y1 & Ab2 + Bb + C = y2 & Ac2 + Bc + C = y3

=⇒ xmin = − B

2A
= b +

1

2

(b − a)2(y2 − y3) + (b − c)2(y2 − y1)

(b − a)(y2 − y3) + (b − c)(y2 − y1)

This can go wrong:

We may find a maximum, not a minimum

It can jump around without converging

Brent’s method: switches between golden section and parabolic
interpolation as appropriate. [NR 10.2]

Newton iteration

Reminder: Newton’s method for root-finding (Newton-Ralphson)

Iterate x (k+1) = x (k) − f (x (k))

f ′(x (k))
until converged

Use root of linear approx. f (x) ≈ f
(
x (k)

)
+ (x − x (k))f ′(x (k)) as next iterate

Newton’s method for finding extrema

Look for root of f ′(x), which hopefully might be a minimum of f (x).

Iterate x (k+1) = x (k) − f ′(x (k))

f ′′(x (k))
until converged

Interpretation: (1) use root of linear approximation of slope,
f ′(x) ≈ f

(
x (k)

)
+ (x − x (k))f ′′

(
x (k)

)
, as next iterate

(2) use minimum of quadratic approximation,

f (x) ≈ f
(
x (k)

)
+ (x − x (k))f ′

(
x (k)

)
+ 1

2 (x − x (k))2f ′′
(
x (k)

)
, as next iterate

Newton iteration

Newton’s method for finding extrema

Iterate x (k+1) = x (k) − f ′(x (k))

f ′′(x (k))
until converged

Newton’s method for multi-dimensions

Iterate ~xk+1 = ~x (k) −

[
H
(
~x (k)

)]−1

∇f (~x (k)) until converged

Usable when gradient and Hessian are not too expensive, and Hessian can
be inverted cheaply.

Use minimum of quadratic approximation,

f (~x) ≈ f
(
~x (k)

)
+ (~x − ~x (k))T∇f

(
~x (k)

)
+

1

2
(~x − ~x (k))TH

(
~x (k)

)
(~x − ~x (k)),

as next iterate

Multi-dimensional minimisation

Minimizing a function of many variables

Many dimensions

Simplex: requires no knowledge of derivatives [NR 10.4]

Direction set methods: minimise successively in different directions
I Succession of 1D problems: line search or line minimization)
I Important issue: Choice of directions

Gradient descent

quasi-Newton methods

Downhill Simplex (Nelder-Mead) algorithm,
a.k.a. amoeba algorithm

For n-variable problem,
choose n + 1 points and calculate f (x) at all these points.

Simplex in 2D Simplex in 3D

‘Move’ the point with largest value of f (x). Repeat. Repeat.

More details: NR 10.4, wikipedia “Nelder-Mead method”

Line minimisation in many dimensions
The most obvious way of minimising f (x) = f (x1, x2, . . .) is

1 Choose a starting guess x(0)

2 Find the minimum in the x1-direction, ie, find value of λ that
minimizes f (x(0) + λe1). Take x(1) = x(0) + λe1

3 Minimise in x2-direction: find λ minimizing f (x(1) + λe2);
Set x(2) = x(1) + λe2. Repeat for all directions

4 Repeat steps 2-3 until we are at a minimum for all directions

i.e., minimize successively in
directions (e1, e2, . . . , en)

This should work eventually, but
ineffiecient.
E.g., bad for long, narrow valleys in
diagonal directions

Once in valley, would prefer to head straight to minimum

Steepest descent and Gradient descent

What if we can calculate the gradient, ∇f (x)?
∇f (x) is a n-dimensional vector.
−∇f (x) is the direction of steepest descent.

Instead of minimizing successively in directions (e1, e2, . . . , en),
Minimize successively in the direction of −∇f (x).

1 Choose a starting guess x(0)

2 Find minimum in direction of
−∇f (x(0)), ie
find λ = λm minimizing
f (x(0) − λ∇f (x(0))).
Take x(1) = x(0) − λm∇f (x(0)).

3 From x(1), minimise in direction of
−∇f (x(1)):

4 Repeat until minimum is reached.

Successive directions
perpedicular!

Lines stop & turn when
tangential to a contour.

Steepest descent and Gradient descent

Could be easier to just move a
bit downward in the direction of
−∇f (x), successively.

Saves the effort of minimising
along each direction —
At the expense of calculating
gradient more often, possibly.

Use if gradient calculation is
cheap.

Usually called gradient descent.

Now popular in machine learning,
esp. neural networks. x(i+1) = x(i) − α∇f (x(i))

α −→ learning rate

Steepest descent versus Gradient descent

Hard to tell difference from the names. Sometimes used interchangeably.

Most common usage (I think): Steepest descent refers to successive
minimizations; gradient descent refers to moving ‘a little bit each time’.

Steepest descent

Gradient descent

Conjugate directions + Conjugate Gradient Method
Instead of minimising along perpendicular directions, e.g., (e1, e2, . . . , en),
what if we could choose directions that don’t spoil previous minimisations?

−→ Choose conjugate directions, (p1,p2, . . . ,pn) relative to matrix A:

pTi Apj = 0 for i 6= j

Conjugacy = generalization of orthogonality

treating A like a metric

(For A = I, conjugate → orthogonal)

−→ Conjugate gradient method for minimising f (x) = 1
2x

TAx− xTb
i.e., method for solving matrix equation Ax = b.
Reaches minimum in n steps.

Directions: p0 = −∇f
(
x(0)
)
; after that pk+1 = −∇f

(
x(k+1)

)
+ βkpk .

Imposing conjugacy determines βk : βk =
∇f
(
x(k+1)

)T · A · pk
pTk · A · pk

Conjugate Gradient Method for quadratic functions

Conjugate gradient method for quadratic functions

Minimizing f (x) = 1
2x

TAx− xTb, or solving Ax = b:

Minimize successively along conjugate directions, (p1,p2, . . . ,pn):

x(k+1) = x(k) + αkpk

p0 = r0

pk+1 = rk+1 + βkpk

Defined rk = −∇f
(
x(k)

)
= b− Ax(k)

βk = −
rTk+1 · A · pk
pTk · A · pk

αk =
rTk · rTk

pTk · A · pk

Reach minimum in n steps
Fig: 2D example−−−−−−−−−−→
vs. Steepest Desc

Don’t have to modify A
All we need to do with A is multiply vectors
→ suitable for using sparse storage

Nonlinear (General) Conjugate Gradient Method

Minimizing arbitrary (not quadratic) function?

Near a minimum, any function is a quadratic form (Taylor expand):

f (x) ≈ f (P) +
∑
i

∂f

∂xi
xi +

1

2

∑
i ,j

∂2f

∂xi∂xj
xixj = c − xTb +

1

2
xTHx

Generally: functions not exactly quadratic; Hessians not exactly known.

Nevertheless, (approximate) conjugate gradient works well.
Hessian is approximated

Various versions of algorithm for general (non-quadratic) case
scipy.optimize.fmin cg uses version of Polak & Ribiere

Quasi-Newton iteration

Newton’s method for multi-dimensions

Iterate ~xk+1 = ~x (k) −
[
H
(
~x (k)

)]−1
∇f (~x (k)) until converged

Usable when gradient+Hessian are not too expensive, and inverting
Hessian is acceptable

Quasi-Newton

Estimate Hessian, usually from successive gradients

Typically ~xk+1 = ~x (k) − A(k)∇f (~x (k)), with A(k) large k−−−−→
[
H
(
~x (k)

)]−1

Several variants; some very widely used
e.g., BFGS, included in scipy.optimize

Also known as variable metric methods [NR 10.7]

Levenberg-Marquardt: combining Newton iteration & gradient descent

Levenberg-Marquardt

Iterate ~xk+1 = ~x (k) −
[
H
(
~x (k)

)
+ λkI

]−1
∇f (~x (k))

until converged. Adjust λ as appropriate

Small λ: Newton iteration. Use when close to minimum.

Large λ: Gradient descent. Use when far from minimum.

If iteration leads to improvement, probably near quadratic region.
Decrease λ.

If iteration worsens value of f , probably not in quadratic region, best
to use more robust method. Increase λ.

Global minimisation

Many physical systems (esp complex or disordered ones) have a large
number of ‘local’ minima (metastable states):

configurations of large molecules (proteins)

spin glasses

neural networks

integrated circuit design (minimise interference)

travelling salesman:
find the shortest round trip for a salesman visiting N towns

Simulated annealing

Analogy

Cooling or crystallisation of liquids (annealing)
They will settle into their ground states if cooled slowly enough

Simulated annealing

Explore X -space with thermal probabilities P(X) ∝ exp(−f (X)/T), using
Metropolis. Start with high T , lower it gradually and slowly

We need:
1 A plan for reducing ‘temperature’ T :

I how many moves to try at each T
I how much to lower T each time

2 a stopping criterion

Summary

Last part on Monte Carlo, Stat.Phys.

Metropolis, heat bath, cluster methods

Monte Carlo used far beyond educational (Ising) model

Minimisation

Local minimisation in many dimensions:
I Direction set methods in many dimensions:

minimise successively in different directions
I Gradient descent:

avoid line search at each step, just move a bit in steepest direction
I Conjugate gradient:

choose directions which do not spoil previous minimisations

Global minimisation: hard (or impossible!)
I Simulated annealing:

“cool” the system down slowly till it settles in its ground state

	MCMC for Classical Stat. Phys.
	Metropolis algorithm
	Alternatives and improvements to Metropolis
	The heat bath algorithm
	Other Stat.Phys. systems

	Minimisation
	One-dimensional minimisation
	Downhill Simplex (Nelder-Mead) algorithm
	Direction set methods in many dimensions
	Global minimisation, simulated annealing
	Summary

