
Overview of slides 06

1 ODE Boundary value problems

2 Linear algebra
Direct elimination (Gaussian elimination)
Krylov subspace methods
Sparse matrices

3 Summary



Boundary value ODEs

Learned in Comp. Phys. 1 — solving boundary value problems and
eigenvalue problems in ODEs. Methods:

Shooting method

1 Guess unknown initial values vi
2 Solve ODE with these values: f (x |vi )
3 Find solution at final point xf
4 Solve f (xf |vi )− vf = 0 using root finding methods.

Relaxation method
1 Guess entire solution satisfying boundary conditions

2 ‘Relax’ trial solution to actual solution

Eigenvalue problems may be made into boundary value problem by
treating the eigenvalue as an additional variable.



Matrix method
Another common technique:

Discretization: Transform ODE to matrix equation

Example

Consider the boundary value problem

y ′′(x) = f (x) , y(a) = Ya, y(b) = Yb .

Divide [a, b] into N sub-intervals, with N + 1 equally spaced points.

xi = a + iδ , yi = y(xi ) δ =
b − a

N
, i = 0, . . . ,N .

Replacing y ′′(x) with discrete derivative, we get

yi+1 − 2yi + yi−1
δ2

= f (xi ) , y0 = Ya, yN = Yb .

A system of linear equations, i.e., a matrix equation.



Matrix equation

Obtained system of N − 1 linear equations:

yi−1 − 2yi + yi+1 = δ2f (xi ) ≡ f̂i , i = 1, . . . ,N − 1 . (*)

We can write this in matrix form
−2 1 0 . . . . . . 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . −2




y1
y2
y3
...

yN−1

 =


f̂1 − Ya

f̂2
f̂3
...

f̂N−1 − Yb



Boundary conditions enter first and last equations:

y0 − 2y1 + y2 = f̂i =⇒ −2y1 + y2 = f̂1 − y0 = f̂1 − Ya



Matrix equation

Discretized to N + 1 points, with N − 1 interior points.
The boundary values of y(x) are known (Dirichlet boundary conditions).

=⇒ (N − 1)× (N − 1) matrix.

Could solve by inverting matrix:
y1
y2
y3
...

yN−1

 =


−2 1 0 . . . . . . 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . −2


−1

f̂1 − Ya

f̂2
f̂3
...

f̂N−1 − Yb



Calculating inverse
of matrix explicitly −→

- inefficient
- usually unnecessary
- but works for moderate N.



Neumann boundary conditions

The boundary conditions were: y(a) = Ya, y(b) = Yb

Values of function given at boundary −→ Dirichlet boundary conditions

If Derivatives given at boundary? −→ Neumann boundary conditions
E.g., y ′(a) = ξa given instead of y(a).

We used for first equation:

y0 − 2y1 + y2 = f̂1 =⇒ −2y1 + y2 = f̂1 − y0 = f̂1 − Ya

No longer works, y0 not known. Need additional equation for y0.

Use a finite difference formula for y ′(x):

Option 1: forward difference:

ξa = (y1 − y0)/δ

=⇒ −y1 + y2 = f̂1 + δξa

Problem: an O(δ) approximation.

Destroys O(δ2) accuracy of
complete procedure



Neumann boundary conditions

y ′(a) = ξa given. For the first equation, y0 − 2y1 + y2 = f̂1, we need
additional equation for y0.

Use a finite difference formula for y ′(x):

Option 2: Use a second-order forward difference: ξa =
4y1 − y2 − 3y0

2δ

Option 3: Use a second-order centred difference: ξa =
y1 − y−1

2δ

Problem: a fictional external point (x−1 = a− iδ) is introduced. Need
equation for y−1 as well. Can use

y−1 − 2y0 + y1 = f̂0



Linear algebra

Starting from a boundary value problem we ended up with a linear algebra
problem!

Ay = b
⇐⇒
formally y = A−1b

The problem is ‘equivalent’ to inverting the matrix A

Matrix problems appear in

solving sets of linear equations

static solutions of pdes

quantum mechanics: single-particle, many-particle, many-spin,...

nonlinear or correlated curve fitting

.....

Related problems: calculating eigenvalues and eigenvectors, eg HΨ = EΨ



Solving linear sets of equations — Methods

Direct elimination methods
I Gauss–Jordan, LU decomposition, QR, Cholesky
I Works with all kinds of matrices but best for small

— usually, matrix has to fit in memory

Iteration
I Jacobi, Gauss–Seidel, overrelaxed Gauss–Seidel
I Write Ax = (E − F )x = b where E is easily invertible
I Iterate x (n+1) = E−1(Fx (n) + b)
I Requires diagonally dominant matrices, can be arbitrarily large
I In slides 07

Krylov subspace methods — e.g., Conjugate gradient
I When system is so big that only sparse matrices can be used
I Does not require A to be known explicitly, only the vector

multiplication y = Ax



Gaussian elimination

We want to find the xi in the equation(s)
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x1
x2
x3
x4

 =


b1
b2
b3
b4


We can

interchange any two rows of A, b

replace any row by a linear combination of itself and another

interchange columns of A and the corresponding rows of x

The most näıve method uses just the second operation

First and third: pivoting



Gaussian elimination without pivoting


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x1
x2
x3
x4

 =


b1
b2
b3
b4



−→


1 a12/a11 a13/a11 a14/a11
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x1
x2
x3
x4

 =


b1/a11
b2
b3
b4



−→


1 a12/a11 a13/a11 a14/a11
0 a22 − a21a12

a11
a23 − a21a13

a11
a24 − a21a14

a11
0 · · ·
0 · · ·



x1
x2
x3
x4

 =


b1/a11

b2 − a21b1
a11
·
·





Without pivoting

−→


1 a12/a11 a13/a11 a14/a11
0 1 · ·
0 0 1 ·
0 0 0 ã44



x1
x2
x3
x4

 =


b1/a11
b̃2
b̃3
b̃4


We carried out forward elimination. Matrix now in upper triangular form.

We can obtain the xi by back-substitution:

x4 = b̃4/ã44, x3 = b̃3 − ã34x4 etc

Problems: doesn’t work if there’s a zero on the diagonal.
Also unstable to rounding error.
Pivoting: swap rows so largest available element appears on diagonal



Gaussian elimination is LU decomposition

Solving Ax = b:
Gaussian elimination +
back-substitution can be
rewritten as

1 A = LU

2 LUx = b =⇒ Ux = L−1b = b̃

3 x = U−1b̃

First two steps are
equivalent to
forward elimination

A b

=

U

=

b

Calculating b̃ = L−1b means solving Lb̃ = b.
L is triangular; so this is forward substitution.
No explicit matrix inversion

bL

=

b

Third step is back-substitution
Matrix inverse U−1 is not explicitly formed.



LU decomposition

If Ax = b has to be solved for many different b vectors:

Pre-compute A = LU
E.g., Crout’s algorithm or Doolittle’s algorithm

Calculate x = U−1(L−1b) for each b.
No explicit matrix inversion, because L, U are triangular.

Instead, forward substitution or back-substitution

LU decomposition is not unique

Either L of U can be specified to have 1’s on the diagonal
→ unique decomposition



Price of Direct method: Operation count and storage

Operation count

Forward elimination ∼ N3

Back-substitution ∼ N2, negligible in comparison

Alternative count: LU decomposition ∼ N3

Forward substition (solve Lb̃ = b) or back-substitution (solve Ux = b̃)
∼ N2, negligible in comparison
This is why pre-computing LU decomposition can make sense

Storage (fast memory or RAM)

A is stored and modified OR L and U are stored

=⇒ Limited by RAM size (N ≈ 104 on typical 2020 desktops)

Seriously inadequate for many problems, even boundary-value ODE’s



Krylov subspace methods

When N is too big to hold full matrix A in memory

but not too big for matrix-vector multiplications: Ax



Conjugate gradient

The same algorithm as in multidimensional minimisation of quadratic
function
Minimise quadratic form f (x) = 1

2(x ,Ax)− (x , b)
=⇒ find x for which ∇f = Ax − b vanishes
=⇒ solve Ax = b

Idea

start with some guess x0, search direction p0

minimise f along p : f (x1) = f (x0 + αp0) = min

find new direction p1 so that min f (x1 + α1p1) also minimises
f (x0 + λ1p0 + λ2p1) ;∀λ1, λ2: conjugate directions

find new conjugate direction p2, . . . , iterate till ‖∇f ‖2 < ε

Such directions turn out to be conjugate or A-orthogonal: (p1,Ap2) = 0



Conjugate gradient

Algorithm

Minimize successively along conjugate directions, (p1,p2, . . . ,pn):

x(k+1) = x(k) + αkpk

p0 = r0

pk+1 = rk+1 + βkpk

Defined rk = −∇f
(
x(k)

)
= b− Ax(k)

βk = −
rTk+1 · A · pk
pTk · A · pk

αk =
rTk · rTk

pTk · A · pk

rk ’s are called residuals

Reach minimum in N steps. In practice, much fewer steps.

Don’t have to modify A, or maybe not even store A
All we need to do with A is multiply vectors
→ suitable for using sparse storage



Krylov subspace

y

Ay

A2y = A(Ay)

A3y = A(A2y)

...

Ak−1y

CG builds on this set of vectors

Subspace spanned by these vectors:
Krylov subspace

Orthonormal basis using Gram-Schmidt

Iterative algorithms with k � N:

Represent the N × N problem as
a k × k problem within subspace

Keep growing k until
representation gives accurate
enough answer.

A

=

V VT

N  N N  k k 
 k k  N



Conjugate gradient, in Krylov subspace language

A

=

V VT

N  N N  k k 
 k k  N

Tiny T matrix is
the representation of

huge A matrix

Solve the problem within (tiny) Krylov subspace: Ty = V †b

Rotate solution y∗ back to original (huge) space: x∗ = V y∗

→ entirely different interpretation of CG algorithm!



Krylov subspace

Other algorithms based on Krylov subspace

Many others:
gmres, biconjugate gradient, bicgstab, minimal residual, . . .

Several of these are implemented in scipy: scipy.sparse.linalg.isolve
(Direct solvers are in scipy.sparse.linalg.dsolve)

Krylov subspace methods also for eigenvalues/eigenvectors

I Trivial version: power method

I More useful: Lanczos and Arnoldi algorithms:

Diagonalize the T matrix

→ recovers some eigenvalues of A



Sparse matrices

We had the equation

yi+1 − 2yi + yi−1 = fi =⇒ Ay = f with Aij = δi ,j−1 − 2δij + δi ,j+1

This is a tridiagonal matrix
— a very common type in physical and mathematical problems
Other common types of matrices:

band diagonal (with bandwidth M)

tridiagonal with fringes (eg the two-dim Laplace operator)

cyclic tridiagonal or banded (with fringes)

band triangular

block diagonal

block tridiagonal

block triangular

singly/doubly bordered block diagonal



Sparse matrices

Sparse storage can save space (RAM)

avoid wasting storage with 64-bit zeros — only store nonzero
elements. Some bookkeeping necessary

Can store sparse matrices with considerably more than ∼ 108

elements, even on average laptop/desktop

Various formats in use [NR 2.7] (E.g., save triplets (i , j ,Aij)

Sparse storage can save computation time

Number of compute operations could be reduced from N3 to N2

Avoid storing matrix?

Often, all one needs is to generate Ax for various vectors x .
Maybe don’t need to create matrix A explicitly in memory?

supply function that takes vector x and outputs vector Ax

could even be the same function for different matrix sizes



Sparse matrices in Python

Scipy provides data structures and routines for sparse matrices:

import scipy.sparse as sparse

Various different types for sparse matrix available.

bsr matrix: Block Sparse Row matrix

coo matrix: A sparse matrix in COOrdinate format.

csc matrix: Compressed Sparse Column matrix

csr matrix: Compressed Sparse Row matrix

dia matrix: Sparse matrix with DIAgonal storage

dok matrix: Dictionary Of Keys based sparse matrix.

lil matrix: Row-based linked list sparse matrix

spmatrix: This class provides a base class for all sparse matrices.



Sparse matrices in Python
Some sparse types are better for constructing and others better for
computation.

Construction: coo matrix, dok matrix, lil matrix

Computation: bsr matrix, csc matrix, csr matrix

Example of construction with coo matrix

row = np.array([0, 3, 1, 0])
col = np.array([0, 3, 1, 2])
data = np.array([4.0, 5.0, 7.0, 9.0])
A = sparse.coo matrix((data, (row, col)), shape=(4, 4)))
print(A)

gives:
(0, 0) 4
(3, 3) 5
(1, 1) 7
(0, 2) 9



Sparse matrices in Python

Other useful operations:

Convert to dense matrix using todense.

Convert to csr or csc using tocsr and tocsc for fast arithmetic.

Look at non zeros using plt.spy from matplotlib.

Given a matrix A and a vector b, we wish to find an x that solves:

Ax = b

When A is dense we use solve from numpy:

import numpy as np
x = np.linalg.solve(A,b)

When A is sparse we use solve from scipy:

import scipy.sparse as sparse
x = sparse.linalg.spsolve(A,b)



Sparse matrices in Python

For constructing banded matrices spdiags is very useful:

Example

import scipy.sparse as sparse
import numpy as np
data = -np.ones((3,4))
data[1,:] *= -2
A = sparse.spdiags(data, [-1,0,1], 4, 4)
print(A.todense())



Summary

Many boundary-value problems can be discretised:

I Turn ODEs into matrix equations
I Works also for many PDE’s (multidimensional BVP’s)

General methods for solving matrix equation Ax = b:
I Direct elimination (Gauss–Jordan etc)
I Krylov subspace based iteration for sparse matrices
I Direct Iteration (Jacobi, Gauss–Seidel)

for diagonally dominant matrices (next slides)

Sparse matrices appear in many physical problems
I Huge savings in storage and computation
I Many numerical methods are tailor-made for sparse matrices
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