Overview of slides 07

(1) Recap
(2) Iterative methods: Jacobi \& Gauss-Seidel

- Jacobi iteration
- Gauss-Seidel iteration
- Overrelaxation (SOR)
- Matrix form of iterations
- Convergence
(3) Partial differential equations
- Classification
- Finite difference methods
- Boundary conditions
(4) Summary

Recap + extensions

- Many boundary-value odes can be discretised \longrightarrow matrix equations
- General methods for solving matrix equation $A x=b$:
- Direct elimination (Gaussian elimin, Gauss-Jordan elimin)
- Iterative techniques for sparse matrices:

Conjugate gradient and variants, GMRES, Arnoldi,....
Collectively known as Krylov subspace techniques

- Iteration (Jacobi, Gauss-Seidel,...) for diagonally dominant matrices
- Sparse matrices appear in many physical problems
- Savings in storage and computation: Sizes $\gg 10^{4}$ become possible on desktop
- Many numerical methods are tailor-made for sparse matrices

Iterative methods: Jacobi \& Gauss-Seidel

Want to solve $A x=b$, i.e., find elements of x in terms of elements of A and b.
i.e. want all x_{i} in terms of the $a_{i j}$ and the b_{i}.
'Solve' for diagonal elements:

$$
a_{i i} x_{i}=b_{i}-\sum_{k \neq i} a_{i k} x_{k} \quad \Longrightarrow \quad x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{k \neq i} a_{i k} x_{k}\right)
$$

This is not a solution; right side has x_{i} 's.
BUT: could use as an iterative scheme.

Reminder: Iterative method for 1 variable

Fixed point iteration

Solving $f(x)=0 \quad \longrightarrow \quad$ Rewrite as $x=g(x)$
Iterate $x^{(n+1)}=g\left(x^{(n)}\right)$. Solution is the fixed point of this iteration
Generally, infinite ways of rewriting as iteration
Can converge if $g^{\prime}(x) \in(-1,1)$ in region containing solution.

Iterative methods require a termination condition.
While loops are often appropriate for iterations

Reminder: Iterative method for 1 variable

Example(s)

Solving $x^{2}=2 \rightarrow$ Rewrite: $2 x^{2}=x^{2}+2 \Longrightarrow x=\frac{x}{2}+\frac{1}{x}$ Iterate $x^{(n+1)}=\frac{1}{2} x^{(n)}+1 / x^{(n)}$
This is Newton-Raphson for $f(x)=x^{2}-2$ SHOW!
Infinite number of other ways to rewrite $x^{2}=2 \rightarrow$
$x^{(n+1)}=\frac{3}{4} x^{(n)}+\frac{1}{2 x^{(n)}}$
Converges
$x^{(n+1)}=-2 x^{(n)}+6 / x^{(n)}$
Doesn't converge

Iterative methods: Jacobi \& Gauss-Seidel

'Solve' $A \mathbf{x}=\mathbf{b}$ for diagonal elements:

$$
\begin{equation*}
a_{i i} x_{i}=b_{i}-\sum_{k \neq i} a_{i k} x_{k} \quad \Longrightarrow \quad x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{k \neq i} a_{i k} x_{k}\right) \tag{1}
\end{equation*}
$$

Using Eq.(1) as basis for iterative methods \longrightarrow

- Jacobi
- Gauss-Seidel
- Successive over-relaxation (SOR)

Jacobi iteration

Jacobi iteration

Use Eq.(1) directly as iterative algorithm, starting with guess $x^{(0)}$:

$$
x_{i}^{(m+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{k \neq i} a_{i k} x_{k}^{(m)}\right)
$$

Example

For a 3×3 system:

$$
\begin{aligned}
& x_{1}^{(m+1)}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{(m)}-a_{13} x_{k}^{(m)}\right) \\
& x_{2}^{(m+1)}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{(m)}-a_{23} x_{3}^{(m)}\right) \\
& x_{3}^{(m+1)}=\frac{1}{a_{33}}\left(b_{3}-a_{31} x_{1}^{(m)}-a_{32} x_{2}^{(m)}\right)
\end{aligned}
$$

Gauss-Seidel iteration

For calcluating $x_{1}^{(m+1)}$, use the m-th estimates for all x_{i}, i.e., $x_{i}^{(m)}$.
For calcluating $x_{2}^{(m+1)}$, could use improved estimate for $x_{1} \longrightarrow$
$x_{1}^{(m+1)}$ is already available.
Gauss-Seidel method for calculating $x_{i}^{(m+1)} \longrightarrow$

$$
\text { Use current estimate, } x_{k}^{(m+1)} \text {, for } k=1, \ldots, i-1
$$

Use previous estimate, $x_{k}^{(m)}$, for $k \geq i$.

Example

Gauss-Seidel for a 3×3 system:

$$
\begin{aligned}
x_{1}^{(m+1)} & =\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{(m)}-a_{13} x_{k}^{(m)}\right) \\
x_{2}^{(m+1)} & =\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{(m+1)}-a_{23} x_{3}^{(m)}\right) \\
x_{3}^{(m+1)} & =\frac{1}{a_{33}}\left(b_{3}-a_{31} x_{1}^{(m+1)}-a_{32} x_{2}^{(m+1)}\right)
\end{aligned}
$$

Gauss-Seidel iteration

Gauss-Seidel iteration

Modify iteration to use values from ongoing iteration step:

$$
x_{i}^{(m+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{k<i} a_{i k} x_{k}^{(m+1)}-\sum_{k \geq i} a_{i k} x_{k}^{(m)}\right)
$$

Successive over-relaxation (SOR)

Performing Gauss-Seidel once on $\vec{x}^{(0)}$, we obtain $\vec{x}_{G S}^{(1)}$. In Gauss-Seidel, we took as the next approximation:

$$
\vec{x}_{G S}^{(1)}=\vec{x}^{(0)}+\left(\vec{x}_{G S}^{(1)}-\vec{x}^{(0)}\right) .
$$

The part in brackets 'relaxes' our estimate toward correct solution.

Over-relaxation

Multiply the relaxation effect by a factor ω :

$$
\vec{x}^{(m+1)}=\vec{x}^{(m)}+\omega\left(\vec{x}_{G S}^{(m+1)}-\vec{x}^{(m)}\right)
$$

Picking optimal ω is an important and tricky topic.

Jacobi \& Gauss-Seidel in matrix form

General scheme

$$
A \vec{x}=\vec{b} \quad \Longrightarrow \quad B \vec{x}=B \vec{x}-A \vec{x}+\vec{b}=(B-A) \vec{x}+\vec{b}
$$

Here B is any matrix. 'Solve': $\quad \vec{x}=B^{-1}(B-A) \vec{x}+B^{-1} \vec{b}$
Can use this as an iterative scheme:

$$
\vec{x}^{(m+1)}=B^{-1}(B-A) \vec{x}^{(m)}+B^{-1} \vec{b}
$$

Jacobi, Gauss-Seidel \longrightarrow different choices of B.
Lower-triangular part, diagonal part, upper-triangular part $A=L+D+U . \quad$ Example:

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a_{21} & 0 & 0 \\
a_{31} & a_{32} & 0
\end{array}\right)+\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)+\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & a_{23} \\
0 & 0 & 0
\end{array}\right)
$$

Jacobi \& Gauss-Seidel in matrix form

Jacobi

Choosing $B=D: \quad \vec{x}^{(m+1)}=-D^{-1}(L+U) \vec{x}^{(m)}+D^{-1} \vec{b}$
Show: this is identical to per-element Jacobi itertion (D is easy to invert)

Gauss-Seidel

Choose $B=D+L: \quad \vec{x}^{(m+1)}=-(D+L)^{-1} U \vec{x}^{(m)}+(D+L)^{-1} \vec{b}$
Show!

SOR

Corresponds to $B=D / \omega+L$. Iteration formula can be written in terms of ω and matrices D, L, U.

Convergence of iterative algorithms

The linear iteration $\vec{x}^{(m+1)}=C \vec{x}^{(m)}+\vec{d}$ converges if the largest eigenvalue of C has magnitude <1
$\Longrightarrow \quad$ spectral radius, $\rho(C)<1$.
Jacobi \& Gauss-Seidel

$$
C=-D^{-1}(L+U) \quad \text { or } \quad C=-(D+L)^{-1} U
$$

Diagonal dominance of A is sufficient:

$$
\left|a_{i i}\right|^{2}>\sum_{k \neq i}\left|a_{i k}\right|^{2}
$$

Stringent!
Not likely for random matrix. But common for ODE/PDE

SOR

Necessary: $\omega \in[0,2]$.
Sufficient conditions difficult.

Done with Linear Algebra

.... for now.

Next: Partial Differential Equations

Partial differential equations

A very large number of physical problems are formulated as pdes:
Schrödinger equation for 1 particle

$$
i \hbar \frac{\partial \psi}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{x})\right] \Psi
$$

Poisson equation

$$
\nabla^{2} u=\rho(\vec{x})
$$

Navier-Stokes equation

$$
\rho\left(\frac{\partial \vec{u}}{\partial t}+\vec{u} \nabla \cdot \vec{u}\right)=-\nabla p+\eta \nabla^{2} \vec{u}+\left(\frac{1}{3} \eta+\zeta\right) \nabla(\nabla \cdot \vec{u})
$$

Korteweg-de Vries equation

$$
\frac{\partial \phi}{\partial t}+\frac{\partial^{3} \phi}{\partial x^{3}}+6 \phi \frac{\partial \phi}{\partial x}=0
$$

and many more!!

Classification

Traditional classification

Second-order pde, 2 variables:

$$
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}+d \frac{\partial u}{\partial x}+e \frac{\partial u}{\partial y}+f u+g=0
$$

elliptic

$$
b^{2}-a c>0 \text { Poisson }
$$

parabolic $\quad b^{2}-a c=0$ Diffusion
hyperbolic $\quad b^{2}-a c<0$ Wave

Classification

Computational classification

- Time evolution (initial value problem)
- Mostly hyperbolic, parabolic

Most important issue: stability

- Static solution (boundary value problem)
- Mostly elliptic
- Most important issue: efficiency

Many pdes are a mix of parabolic, hyperbolic, elliptic

Methods

- Finite differences
- Spectral methods
- Finite elements
- Monte Carlo
- Variational
- ...

Finite differences

For 2 spatial variables:

(1) Replace x and y with a discrete grid (i, j) :

$$
x_{i}=x_{0}+i \delta_{x}, \quad y_{j}=y_{0}+j \delta_{y}
$$

Function is given by values on lattice points: $u(x, y) \rightarrow u_{i j}$
(2) Replace derivatives by finite differences
(3) Result can be written as matrix equation $A u=b$

$$
\begin{aligned}
& u, b \text { are } N=n_{x} \times n_{y} \text { vectors } \\
& A \text { is a sparse } N \times N \text { matrix }
\end{aligned}
$$

(9) Use direct/iteration/Fourier methods to solve for u

In isotropic systems (with static solutions) we usually choose $\delta_{x}=\delta_{y}=a$
Contrast: for time evolution we need $\delta_{t} \ll \delta_{x}$

Poisson equation (elliptic)

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=\rho(x, y)
$$

Discrete derivative: $\quad \frac{\partial^{2} \Phi}{\partial x^{2}} \rightarrow \frac{\Phi_{i+1, j}-2 \Phi_{i, j}+\Phi_{i-1, j}}{a^{2}}$

$$
\Longrightarrow \Phi_{i+1, j}+\Phi_{i-1, j}+\Phi_{i, j-1}+\Phi_{i, j+1}-4 \Phi_{i, j}=a^{2} \rho_{i j} \equiv \hat{\rho}_{i j}
$$

To write as matrix equation, relabel coordinates: $k=i+N_{x} j$

We get $A \boldsymbol{\Phi}=\hat{\rho}$

$$
\begin{aligned}
A_{m n}=\delta_{m, n+1} & +\delta_{m, n-1}+\delta_{m, n+N_{x}} \\
& +\delta_{m, n-N_{x}}-4 \delta_{m n}
\end{aligned}
$$

A is sparse: most $A_{m n}=0$!

Boundary conditions

Important classes of boundary conditions:

- Dirichlet $\Phi(x)=b(x)$ on boundary
- Neumann $\partial_{n} \Phi(x)=b^{\prime}(x)$ on boundary
$\partial_{n} \Phi$ is normal derivative, orthogonal to boundary
- Periodic $\Phi(x+L)=\Phi(x)$

This only works for regular (rectangular) boundaries! Used mostly when we are interested in bulk behaviour \rightarrow take large volume limit
Topology changes: line \rightarrow circle, rectangle \rightarrow torus, \ldots

Implementation

Dirichlet

If one of the neighbours is on the boundary, it gets replaced by the boundary value b_{j} in the finite difference:

$$
\nabla^{2} \Phi_{1, j} \quad \rightarrow \quad b_{0 j}+\Phi_{2, j}+\Phi_{1, j-1}+\Phi_{1, j+1}-4 \Phi_{1, j}
$$

As in ODE boundary value problem:

Subtract boundary values from source term

Implementation

Neumann

Several possibilities, as in ODE.
E.g., use forward/backward derivative on the boundary:

$$
b_{0 j}^{\prime}=(\partial \Phi)_{0 j}=\Phi_{1 j}-\Phi_{0 j}
$$

So we replace $\Phi_{0 j} \rightarrow \Phi_{1 j}-b_{0 j}^{\prime}$ in finite diff operator
Disadvantage: becomes spatially 1st order.
2nd order? \longrightarrow similar methods as in ODE boundary value problem.

Periodic

If we are at the edge, the nearest neighbour is at opposite edge!
So $\Phi_{0 j} \rightarrow \Phi_{L j} ; \Phi_{L+1, j} \rightarrow \Phi_{1 j}$ etc in all finite differences

Irregular boundaries

Map boundary onto the regular grid. Number interior grid points and boundary points. Find distances from interior points to boundary. Taylor expand differential operators near boundary.

Taylor expansion around Φ_{9} :

$$
\begin{aligned}
& b_{4} \approx \Phi_{9}+\theta \partial_{y} \Phi_{9}+\frac{1}{2} \theta^{2} \partial_{y}^{2} \Phi_{9} \\
& \Phi_{5} \approx \Phi_{9}-\partial_{y} \Phi_{9}+\frac{1}{2} \partial_{y}^{2} \Phi_{9} \\
& \partial_{y}^{2} \Phi_{9} \approx \frac{\theta \Phi_{5}+b_{4}-(1+\theta) \Phi_{9}}{\theta(1+\theta)} \\
& \rightarrow \text { Difference approx for } \partial_{y}^{2} \Phi_{9}
\end{aligned}
$$

Repeat for all boundary points!

Some Python tricks

```
X.reshape((M,N))
X.reshape((M,N,P))
X,Y = np.meshgrid(x,y)
scipy.sparse.eye(N)
```

rearranges X into a $M \times N$ matrix rearranges X into a $M \times N \times P$ matrix etc.
creates 2d arrays X, Y from vectors X, y creates the sparse $N \times N$ unit matrix

Summary

- Direct Iteration for Linear Systems of Eqs
- Jacobi, Gauss-Seidel, SOR
- Matrix formulation
- Classification of pdes:
- time evolution, initial value (mostly parabolic, hyperbolic)
- static solution, boundary value (mostly elliptic)
- Finite differences transform PDEs into matrix equations
- Similar to BVP's for ODEs
- Boundary conditions
- Dirichlet: subtract boundary terms from source term
- Neumann: modify finite diff on boundary, add boundary term to source
- Periodic: wrap finite differences around boundary

