
Overview of slides 07

1 Recap

2 Iterative methods: Jacobi & Gauss-Seidel
Jacobi iteration
Gauss-Seidel iteration
Overrelaxation (SOR)
Matrix form of iterations
Convergence

3 Partial differential equations
Classification
Finite difference methods
Boundary conditions

4 Summary

Recap + extensions

Many boundary-value odes can be discretised −→ matrix equations

General methods for solving matrix equation Ax = b:

I Direct elimination (Gaussian elimin, Gauss-Jordan elimin)

I Iterative techniques for sparse matrices:
Conjugate gradient and variants, GMRES, Arnoldi,....
Collectively known as Krylov subspace techniques

I Iteration (Jacobi, Gauss-Seidel,...) for diagonally dominant matrices

Sparse matrices appear in many physical problems

I Savings in storage and computation:
Sizes � 104 become possible on desktop

I Many numerical methods are tailor-made for sparse matrices

Iterative methods: Jacobi & Gauss-Seidel

Want to solve Ax = b, i.e., find elements of x in terms of elements of A
and b.
i.e. want all xi in terms of the aij and the bi .

‘Solve’ for diagonal elements:

aiixi = bi −
∑
k 6=i

aikxk =⇒ xi =
1

aii

bi −
∑
k 6=i

aikxk


This is not a solution; right side has xi ’s.

BUT: could use as an iterative scheme.

Reminder: Iterative method for 1 variable

Fixed point iteration

Solving f (x) = 0 −→ Rewrite as x = g(x)

Iterate x (n+1) = g
(
x (n)

)
. Solution is the fixed point of this iteration

Generally, infinite ways of rewriting as iteration

Can converge if g ′(x) ∈ (−1, 1) in region containing solution.

Iterative methods require a termination condition.

While loops are often appropriate for iterations

Reminder: Iterative method for 1 variable

Example(s)

Solving x2 = 2 → Rewrite: 2x2 = x2 + 2 =⇒ x =
x

2
+

1

x

Iterate x (n+1) = 1
2x

(n) + 1/x (n)

This is Newton-Raphson for f (x) = x2 − 2 SHOW!

Infinite number of other ways to rewrite x2 = 2 →

x (n+1) =
3

4
x (n) +

1

2x (n)
Converges

x (n+1) = −2x (n) +6/x (n)

Doesn’t converge
0 5 10

n

0
.5

1
1

.5
2

x

(n
+

1
)

0 5 10

n

−
4

0
0

4
0

x ← −2x + 6/xx ← 0.75x + 0.5/x

Iterative methods: Jacobi & Gauss-Seidel

‘Solve’ Ax = b for diagonal elements:

aiixi = bi −
∑
k 6=i

aikxk =⇒ xi =
1

aii

bi −
∑
k 6=i

aikxk

 (1)

Using Eq.(1) as basis for
iterative methods −→

- Jacobi
- Gauss-Seidel
- Successive over-relaxation (SOR)

Jacobi iteration

Jacobi iteration

Use Eq.(1) directly as iterative algorithm, starting with guess x (0):

x
(m+1)
i =

1

aii

bi −
∑
k 6=i

aikx
(m)
k


Example

For a 3× 3 system:

x
(m+1)
1 =

1

a11

(
b1 − a12x

(m)
2 − a13x

(m)
k

)
x
(m+1)
2 =

1

a22

(
b2 − a21x

(m)
1 − a23x

(m)
3

)
x
(m+1)
3 =

1

a33

(
b3 − a31x

(m)
1 − a32x

(m)
2

)

Gauss-Seidel iteration
For calcluating x

(m+1)
1 , use the m-th estimates for all xi , i.e., x

(m)
i .

For calcluating x
(m+1)
2 , could use improved estimate for x1 −→

x
(m+1)
1 is already available.

Gauss-Seidel method for calculating x
(m+1)
i −→

Use current estimate, x
(m+1)
k , for k = 1, . . . , i − 1.

Use previous estimate, x
(m)
k , for k ≥ i .

Example

Gauss-Seidel for a 3× 3 system:

x
(m+1)
1 =

1

a11

(
b1 − a12x

(m)
2 − a13x

(m)
k

)
x
(m+1)
2 =

1

a22

(
b2 − a21x

(m+1)
1 − a23x

(m)
3

)
x
(m+1)
3 =

1

a33

(
b3 − a31x

(m+1)
1 − a32x

(m+1)
2

)

Gauss-Seidel iteration

Gauss-Seidel iteration

Modify iteration to use values from ongoing iteration step:

x
(m+1)
i =

1

aii

bi −
∑
k<i

aikx
(m+1)
k −

∑
k≥i

aikx
(m)
k



Successive over-relaxation (SOR)

Performing Gauss-Seidel once on ~x (0), we obtain ~x
(1)
GS .

In Gauss-Seidel, we took as the next approximation:

~x
(1)
GS = ~x (0) +

(
~x
(1)
GS − ~x

(0)
)
.

The part in brackets ‘relaxes’ our estimate toward correct solution.

Over-relaxation

Multiply the relaxation effect by a factor ω:

~x (m+1) = ~x (m) + ω
(
~x
(m+1)
GS − ~x (m)

)
Picking optimal ω is an important and tricky topic.

Jacobi & Gauss-Seidel in matrix form

General scheme

A~x = ~b =⇒ B~x = B~x − A~x + ~b = (B − A)~x + ~b

Here B is any matrix. ‘Solve’: ~x = B−1(B − A)~x + B−1~b
Can use this as an iterative scheme:

~x (m+1) = B−1(B − A)~x (m) + B−1~b

Jacobi, Gauss-Seidel −→ different choices of B.

Lower-triangular part, diagonal part, upper-triangular part

A = L + D + U. Example:a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 0 0 0
a21 0 0
a31 a32 0

+

a11 0 0
0 a22 0
0 0 a33

+

0 a12 a13
0 0 a23
0 0 0



Jacobi & Gauss-Seidel in matrix form

Jacobi

Choosing B = D: ~x (m+1) = −D−1(L + U)~x (m) + D−1~b

Show: this is identical to per-element Jacobi itertion (D is easy to invert)

Gauss-Seidel

Choose B = D + L: ~x (m+1) = −(D + L)−1U~x (m) + (D + L)−1~b

Show!

SOR

Corresponds to B = D/ω + L.
Iteration formula can be written in terms of ω and matrices D, L, U.

Convergence of iterative algorithms

The linear iteration ~x (m+1) = C~x (m) + ~d converges if the largest
eigenvalue of C has magnitude < 1

=⇒ spectral radius, ρ(C) < 1.

Jacobi & Gauss-Seidel

C = −D−1(L + U) or C = −(D + L)−1U

Diagonal dominance of A
is sufficient:

|aii |2 >
∑
k 6=i

|aik |2

Stringent!
Not likely for random matrix.
But common for ODE/PDE

SOR

Necessary: ω ∈ [0, 2]. Sufficient conditions difficult.

Done with Linear Algebra

.... for now.

Next: Partial Differential Equations

Partial differential equations
A very large number of physical problems are formulated as pdes:

Schrödinger equation for 1 particle

i~
∂Ψ

∂t
=
[
− ~2

2m
∇2 + V (~x)

]
Ψ

Poisson equation

∇2u = ρ(~x)

Navier–Stokes equation

ρ(
∂~u

∂t
+ ~u∇ · ~u) = −∇p + η∇2~u + (

1

3
η + ζ)∇(∇ · ~u)

Korteweg–de Vries equation

∂φ

∂t
+
∂3φ

∂x3
+ 6φ

∂φ

∂x
= 0

and many more!!

Classification

Traditional classification

Second-order pde, 2 variables:

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu + g = 0

elliptic b2 − ac > 0 Poisson
parabolic b2 − ac = 0 Diffusion
hyperbolic b2 − ac < 0 Wave

Classification

Computational classification

Time evolution (initial value problem)
I Mostly hyperbolic, parabolic
I Most important issue: stability

Static solution (boundary value problem)
I Mostly elliptic
I Most important issue: efficiency

Many pdes are a mix of parabolic, hyperbolic, elliptic

Methods

Finite differences

Spectral methods

Finite elements

Monte Carlo

Variational

. . .

Finite differences

For 2 spatial variables:

1 Replace x and y with a discrete grid (i , j):

xi = x0 + iδx , yj = y0 + jδy

Function is given by values on lattice points: u(x , y)→ uij

2 Replace derivatives by finite differences

3 Result can be written as matrix equation Au = b

I u, b are N = nx × ny vectors
I A is a sparse N × N matrix

4 Use direct/iteration/Fourier methods to solve for u

In isotropic systems (with static solutions) we usually choose δx = δy = a

Contrast: for time evolution we need δt � δx

Poisson equation (elliptic)

∂2Φ

∂x2
+
∂2Φ

∂y2
= ρ(x , y)

Discrete derivative:
∂2Φ

∂x2
→

Φi+1,j − 2Φi ,j + Φi−1,j
a2

=⇒ Φi+1,j + Φi−1,j + Φi ,j−1 + Φi ,j+1 − 4Φi ,j = a2ρij ≡ ρ̂ij

wd d
d
d

To write as matrix equation,
relabel coordinates: k = i + Nx j

We get AΦ = ρ̂

Amn = δm,n+1 + δm,n−1 + δm,n+Nx

+ δm,n−Nx − 4δmn

A is sparse: most Amn = 0!

Boundary conditions

Important classes of boundary conditions:

Dirichlet Φ(x) = b(x) on boundary

Neumann ∂nΦ(x) = b′(x) on boundary
∂nΦ is normal derivative, orthogonal to boundary

Periodic Φ(x + L) = Φ(x)
This only works for regular (rectangular) boundaries!
Used mostly when we are interested in bulk behaviour
→ take large volume limit
Topology changes: line → circle, rectangle → torus, . . .

Implementation

Dirichlet

If one of the neighbours is on the boundary, it gets replaced by the
boundary value bj in the finite difference:

∇2Φ1,j → b0j + Φ2,j + Φ1,j−1 + Φ1,j+1 − 4Φ1,j

As in ODE boundary value problem:

Subtract boundary values from source term

Implementation

Neumann

Several possibilities, as in ODE.
E.g., use forward/backward derivative on the boundary:

b′0j = (∂Φ)0j = Φ1j − Φ0j

So we replace Φ0j→Φ1j − b′0j in finite diff operator

Disadvantage: becomes spatially 1st order.
2nd order? −→ similar methods as in ODE boundary value problem.

Periodic

If we are at the edge, the nearest neighbour is at opposite edge!
So Φ0j → ΦLj ; ΦL+1,j → Φ1j etc in all finite differences

Irregular boundaries

Map boundary onto the regular grid. Number interior grid points and
boundary points. Find distances from interior points to boundary. Taylor
expand differential operators near boundary.

..................

..................

..................

..................

..................

.....................
......................

.......................
..

.........................
...

....................
........

.................
..........

..............
............

............
............
.

...........
...........
.

..........
..........
...

.........
.........
....

.........
.........
....

.........
.........
..

........

........

...

........

........

..

.........
.........

.........
.........

..........
........

............
......

................
.....

.....................
.

.......................
............................

............................

............................

...........................

..........................

.........................

.......................

.......................

......................

......................

....................

...................t
t

t

t

t

t

t

t

t

t t

t t

tt
tt

1 2 3

4 5 6 7

8 9 10 11 12

13 14

b1

b2

b3

b4

b5

θ

Taylor expansion around Φ9:

b4 ≈ Φ9 + θ∂yΦ9 +
1

2
θ2∂2yΦ9

Φ5 ≈ Φ9 − ∂yΦ9 +
1

2
∂2yΦ9

∂2yΦ9 ≈
θΦ5 + b4 − (1 + θ)Φ9

θ(1 + θ)

→ Difference approx for ∂2yΦ9

Repeat for all boundary points!

Some Python tricks

X.reshape((M,N)) rearranges X into a M×N matrix
X.reshape((M,N,P)) rearranges X into a M×N×P matrix

etc.
X,Y = np.meshgrid(x,y) creates 2d arrays X,Y from vectors x,y
scipy.sparse.eye(N) creates the sparse N×N unit matrix

Summary

Direct Iteration for Linear Systems of Eqs

I Jacobi, Gauss-Seidel, SOR
I Matrix formulation

Classification of pdes:
I time evolution, initial value (mostly parabolic, hyperbolic)
I static solution, boundary value (mostly elliptic)

Finite differences transform PDEs into matrix equations
I Similar to BVP’s for ODEs

Boundary conditions
I Dirichlet: subtract boundary terms from source term
I Neumann: modify finite diff on boundary, add boundary term to source
I Periodic: wrap finite differences around boundary

	Recap
	Iterative methods: Jacobi & Gauss-Seidel
	Jacobi iteration
	Gauss-Seidel iteration
	Overrelaxation (SOR)
	Matrix form of iterations
	Convergence

	Partial differential equations
	Classification
	Finite difference methods
	Boundary conditions

	Summary

