Overview of slides 08

(1) Initial value problems for pdes

- Stability issues
- The FTCS scheme
- Improved discretisation schemes
- Implicit schemes
- The Crank-Nicolson scheme
- Schrödinger equation
(2) Wave equation
(3) Relaxation methods for BVPs
(4) Summary

Boundary and initial value problems

We looked at boundary value problems, which may be solved in a similar way to boundary-value odes.

Now: initial value problems.
Start with diffusion equation in $1+1$ dimension:

Diffusion equation

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

Identical to heat equation.
Similar to Schroedinger equation in $1+1$ dimension.

Initial value problems for pdes

Diffusion equation in $1+1$ dimension:

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

Discretise space \& time.

Using grid spacings $\Delta x=a$ in space, Δt in time, we write

$$
u\left(x_{i}, t_{n}\right)=u\left(x_{0}+i a, t_{0}+n \Delta t\right) \equiv u_{i}^{(n)} .
$$

Take forward derivative in time, and symmetric second derivative in space: Forward Time, Centred Space

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\frac{u_{j}^{(n+1)}-u_{j}^{(n)}}{\Delta t}=D \frac{\partial^{2} u}{\partial x^{2}}=\frac{D}{a^{2}}\left(u_{j-1}^{(n)}-2 u_{j}^{(n)}+u_{j+1}^{(n)}\right) \tag{1}\\
& \Longrightarrow u_{j}^{(n+1)}=\left(1-\frac{2 \Delta t}{a^{2}}\right) u_{j}^{(n)}+\frac{\Delta t}{a^{2}}\left(u_{j+1}^{(n)}+u_{j-1}^{(n)}\right)
\end{align*}
$$

It is straightforward to iterate this forward in time from $n=0$.

Stability issues

- Discretization of time-dep PDE's often leads to instabilities
- If discretization scheme is unstable, small errors blow up with time evolution.
- Origin of errors? E.g., machine precision
- Error in each step can be, e.g., of order $\Delta t(\Delta x)^{2}$ Instability is due to continued time evolution, not single-step error
- Think of $u^{(m)}$ as a vector at each timestep.

Explicit schemes like FTCS: $u^{m+1}=A u^{m}$
Scheme is stable if A has |eigenvalues $\mid<1$.
Alternative analysis: von Neumann stability analysis

- Later: implicit schemes: $B u^{m+1}=A u^{m}$

Stability analysis

von Neumann analysis

Fourier transform in space: $u(x)=\sum_{k} e^{i k x} u(k)$
Each $u(k)$ evolves independently in time
(at least for linear problems with constant coeffs)
This gives the eigenmode evolution

$$
\begin{equation*}
u_{k}^{(n+1)}=\xi_{k} u_{k}^{(n)} \quad \Longrightarrow \quad u_{j}^{(n)}=u_{0}^{(0)}\left(\xi_{k}\right)^{n} e^{i k j a} \tag{2}
\end{equation*}
$$

To find amplification factor ξ_{k}, substitute (2) into finite difference equation

$$
\left|\xi_{k}\right| \begin{cases}>1 & \text { exponential growth, instability } \\ <1 & \text { exponential damping, stability } \\ =1 & \text { more detailed analysis needed }\end{cases}
$$

von Neumann stability: $\left|\xi_{k}\right| \leq 1 \quad \forall k$
(for ALL k)

Stability for FTCS

Inserting the eigenmode evolution (2) into the FTCS equation (1) gives

$$
\begin{aligned}
& \frac{\xi_{k}^{n+1} e^{i j k a}-\xi_{k}^{n} e^{i j k a}}{\Delta t}=\frac{D}{a^{2}} \xi_{k}^{n}\left(e^{i k(j-1) a}-2 e^{i k j a}+e^{i k(j+1) a}\right) \\
& \xi_{k}=1+\frac{D \Delta t}{a^{2}}\left(e^{-i k a}-2+e^{i k a}\right)=1-\frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}
\end{aligned}
$$

This is always $\leq 1 \quad \Longrightarrow \quad$ stability requires $\xi_{k} \geq-1$

$$
\Longrightarrow \frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2} \leq 2
$$

'Worst case': $\sin ^{2}(k a / 2)=1$

$$
\text { Stability condition: } \quad \frac{\Delta t}{a^{2}} \leq \frac{1}{2 D}
$$

An example

The python file ftcs_driver.py solves the diffusion equation with the initial distribution

$$
u_{0}(x)=u\left(x, t_{0}\right)=e^{-x^{2} / 4 D t_{0}}, \quad-5 \leq x \leq 5, t_{0}=0.1
$$

and boundary conditions

$$
u\left(\pm x_{0}, t\right)=\sqrt{\frac{t_{0}}{t}} e^{-x_{0}^{2} / 4 D t}, \quad x_{0}=5
$$

The grid spacing in the x direction has been set to $a=0.05$, and the diffusion constant $D=1$.
ftcs_driver (dt, t) plots the solution for time step dt at time(s) t.
Run this with $d t=0.0012$ and see what you get.
Then run with $\mathrm{dt}=0.0013$ and see what happens.

FTCS in $2+1$ dimension

Our Ansatz is now

$$
\begin{equation*}
u_{j l}^{(n)}=u_{0} \xi_{k}^{n} e^{i k_{x} j \Delta x} e^{i k_{y} l \Delta y} \tag{3}
\end{equation*}
$$

For $\Delta x=\Delta y=a$ the FTCS scheme is

$$
\frac{u_{j l}^{(n+1)}-u_{j l}^{(n)}}{\Delta t}=\frac{D}{a^{2}}\left(u_{j-1, l}^{(n)}+u_{j, l-1}^{(n)}+u_{j+1, l}^{(n)}+u_{j, l+1}^{(n)}-4 u_{j l}^{(n)}\right)
$$

Inserting (3) gives

$$
\begin{aligned}
\xi_{k} & =1+\frac{D \Delta t}{a^{2}}\left(e^{-i k_{x} a}+e^{-i k_{y} a}+e^{i k_{x} a}+e^{i k_{y} a}-4\right) \\
& =1-\frac{4 D \Delta t}{a^{2}}\left(\sin ^{2} \frac{k_{x} a}{2}+\sin ^{2} \frac{k_{y} a}{2}\right)
\end{aligned}
$$

$$
\left|\xi_{k}\right| \leq 1 \quad \forall k \quad \Longrightarrow \quad \frac{\Delta t}{a^{2}} \leq \frac{1}{4 D}
$$

Improving stability (want to use larger Δt)

Stability condition is quite severe

- We want to model features at large scales $\lambda \gg a$

Typical diffusion time is $\tau \sim \lambda^{2} / D$
\rightarrow need $n=\frac{\tau}{\Delta t} \sim \frac{\lambda^{2}}{a^{2}}$ time steps

- We want to improve accuracy by reducing a

But if $a \rightarrow a / 2$ then $\Delta t \rightarrow \Delta t / 4$
$\rightarrow 8$ times as much cpu time!

Can we improve on this?

Second order time derivative?

FTCS is first-order accurate in time, second order in space
What about using second-order differencing in time?
Centred Time Centred Space

$$
\frac{u_{j}^{(n+1)}-u_{j}^{(n-1)}}{2 \Delta t}=\frac{D}{a^{2}}\left(u_{j-1}^{(n)}-2 u_{j}^{(n)}+u_{j+1}^{(n)}\right)
$$

von Neumann

$$
\begin{gathered}
\xi_{k}-\frac{1}{\xi_{k}}=-\frac{8 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2} \\
\Longrightarrow \xi_{k}=-\frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2} \pm \sqrt{1+\left(\frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}\right)^{2}}
\end{gathered}
$$

The (-) mode is unstable for all k and Δt !
CTCS is unconditionally unstable

Implicit schemes: BTCS

Explicit scheme: $\frac{\partial^{2} u}{\partial x^{2}}$ evaluated at t Implicit scheme: evaluate at $t+\Delta t$

Backward Time, Centred Space

$$
\begin{gathered}
\frac{u_{j}^{(n+1)}-u_{j}^{(n)}}{\Delta t}=\frac{u_{j-1}^{(n+1)}-2 u_{j}^{(n+1)}+u_{j+1}^{(n+1)}}{a^{2}} \\
\Longrightarrow\left(1+\frac{2 \Delta t}{a^{2}}\right) u_{j}^{(n+1)}-\frac{\Delta t}{a^{2}}\left(u_{j-1}^{(n+1)}+u_{j+1}^{(n+1)}\right)=u_{j}^{(n)}
\end{gathered}
$$

We get a sparse matrix equation for $u^{(n+1)}$.
von Neumann analysis

$$
\frac{\xi-1}{\Delta t}=\frac{\xi}{a^{2}}\left(e^{i k a}-2+e^{-i k a}\right) \quad \Longrightarrow \xi=\frac{1}{1+\frac{4 \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}}
$$

$\xi<1$ for all $k, \Delta t$: BTCS is unconditionally stable

Crank-Nicolson

BTCS is stable, but only first-order accurate in time.
How can we get second-order accuracy?

Average FTCS and BTCS!

(the same as taking a centred time derivative around $t+\Delta t / 2$)

$$
\frac{u_{j}^{(n+1)}-u_{j}^{(n)}}{\Delta t}=\frac{1}{2 a^{2}}[\underbrace{u_{j+1}^{(n+1)}-2 u_{j}^{(n+1)}+u_{j-1}^{(n+1)}}_{B T C S}+\underbrace{u_{j+1}^{(n)}-2 u_{j}^{(n)}+u_{j-1}^{(n)}}_{\text {FTCS }}]
$$

Crank-Nicolson

$$
\left(1+\frac{\Delta t}{a^{2}}\right) u_{j}^{(n+1)}-\frac{\Delta t}{2 a^{2}}\left(u_{j-1}^{(n+1)}+u_{j+1}^{(n+1)}\right)=\left(1-\frac{\Delta t}{a^{2}}\right) u_{j}^{(n)}+\frac{\Delta t}{2 a^{2}}\left(u_{j-1}^{(n)}+u_{j+1}^{(n)}\right)
$$

Stability of Crank-Nicolson

von Neumann analysis

$$
\begin{aligned}
& \xi\left(1-\frac{-4 \Delta t}{2 a^{2}} \sin ^{2} \frac{k a}{2}\right)=1+\frac{-4 \Delta t}{2 a^{2}} \sin ^{2} \frac{k a}{2} \\
& \Longrightarrow \quad \xi=\frac{1-\frac{2 \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}}{1+\frac{2 \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}}=\frac{1-b^{2}}{1+b^{2}}
\end{aligned}
$$

The modulus of the numerator is always smaller than the denominator
Crank-Nicolson is unconditionally stable

Price of stability

BTCS and Crank-Nicholson are stable, but implicit methods: need to solve linear set of equations at each step $B u^{(m+1)}=A u^{(m)} \quad \longrightarrow \quad$ pre-factorize $B \quad(L U$ or Cholesky)

Schrödinger equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar}{2 m} \nabla^{2} \Psi+V(\vec{x}) \Psi
$$

This can be discretised in the same way as diffusion equation

Important constraint

Time evolution is unitary \Longleftrightarrow Total probability is conserved

$$
\text { Formally: } \quad \Psi(t)=e^{-i H\left(t-t_{0}\right) / \hbar} \Psi\left(t_{0}\right)
$$

FTCS for Schrödinger equation

$$
\Psi^{(n+1)}=\Psi^{(n)}-\frac{i \Delta t}{\hbar} H \Psi^{(n)}=\left(1-\frac{i \Delta t}{\hbar} H\right) \Psi^{(n)}
$$

This is unconditionally unstable, and not unitary!
BTCS is stable, but still not unitary.

A unitary evolution operator

Use the Cayley form for $\exp (i H)$,

$$
e^{i H \Delta t} \approx \frac{1-\frac{1}{2} i H \Delta t}{1+\frac{1}{2} i H \Delta t}
$$

This gives us

$$
\left(1+\frac{1}{2} i H \Delta t\right) \psi^{(n+1)}=\left(1-\frac{1}{2} i H \Delta t\right) \psi^{(n)}
$$

This is Crank-Nicolson again! Stable, second-order accurate and unitary.

Schrödinger equation

Widely used methods

- Crank-Nicholson type methods Price: solving linear system at each step
- Spectral methods with time splitting

$$
\psi(t+\epsilon)=e^{-(i / \hbar)(\hat{T}+\hat{V}) \epsilon} \psi(t) \approx e^{-(i / \hbar) \hat{T} \epsilon / 2} e^{-(i / \hbar) \hat{V} \epsilon} e^{-(i / \hbar) \hat{T} \epsilon / 2} \psi(t)
$$

Evolve with \hat{T} in Fourier space, evolve with \hat{V} in real space.
Price: Fourier and inverse Fourier transforms at each step.

Wave equation

Examples too numerous to list. . .

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

has formal solution

$$
u(x, t)=F(x-c t)+G(x+c t), \quad \text { any } F, G
$$

The equation can be discretised directly (using staggered leapfrog scheme) or transformed to two coupled first-order equations,

$$
\begin{array}{rr}
\frac{\partial v}{\partial t}+c \frac{\partial w}{\partial x}=0, & \frac{\partial w}{\partial t}+c \frac{\partial v}{\partial x}=0 \\
\text { with } \quad v(x, t)=\frac{\partial u}{\partial t}, & w(x, t)=-c \frac{\partial u}{\partial x}
\end{array}
$$

Courant-Friedrichs-Lewy condition

Any explicit discretisation scheme for wave or advection equation requires

$$
\Delta t<c \Delta x
$$

Relaxation methods for static boundary value problems

We want to sove $\mathcal{L} \Phi=\rho, \quad \mathcal{L}=$ elliptic operator, eg. ∇^{2}
Start with initial guess, let system 'relax' \longrightarrow solution of pde

Diffusion in computer time

$$
\frac{\partial \Phi}{\partial t}=\mathcal{L} \Phi-\rho \quad \mathcal{L}=\text { elliptic operator, eg. } \nabla^{2}
$$

\rightarrow stationary (late time) solution fulfils $\mathcal{L} \Phi=\rho$

We converted the problem to initial value PDE Applying PDE techniques to solving ODE BVP!!

Common example: time-independent Schrödinger equation

$$
\begin{aligned}
& \hat{H} \Psi(x, y)=E \Psi(x, y) \text { can be solved for smallest } E \text { by evolving } \\
& \qquad \begin{array}{l}
\frac{\partial}{\partial t} \Psi(x, y, t)=\hat{H} \Psi(x, y, t) \text { to late times } \\
\end{array}>\text { propagation in imaginary time }
\end{aligned}
$$

Summary

- von Neumann stability criterion for time evolution equations:
(1) Fourier transform in space
(2) Find amplification factor ξ_{k} for each mode k
(3) Stability $\Longleftrightarrow \xi_{k} \leq 1$
- Forward Time, Centred Space: Explicit, stable for $\Delta t \leq a^{2} / 2 d D \quad(1+\mathrm{d} \operatorname{dim})$
- Backward Time, Centred Space: Implicit, unconditionally stable
- Both FTCS and BTCS are first order in time
- Crank-Nicolson: Average FTCS and BTCS. Second order in time, unconditionally stable, widely used
- Relaxation: applying PDE techniques to ODE BVP's

