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Boundary and initial value problems

We looked at boundary value problems, which may be solved in a similar
way to boundary-value odes.

Now: initial value problems.
Start with diffusion equation in 1+1 dimension:

Diffusion equation

∂u

∂t
= D

∂2u

∂x2

Identical to heat equation.
Similar to Schroedinger equation in 1+1 dimension.



Initial value problems for pdes
Diffusion equation in 1+1 dimension:

∂u

∂t
= D

∂2u

∂x2

Discretise space & time.

Using grid spacings ∆x = a in space, ∆t in time, we write

u(xi , tn) = u(x0 + ia, t0 + n∆t) ≡ u
(n)
i .

Take forward derivative in time, and symmetric second derivative in space:
Forward Time, Centred Space

∂u

∂t
=

u
(n+1)
j − u

(n)
j

∆t
= D

∂2u

∂x2
=

D

a2

(
u

(n)
j−1 − 2u

(n)
j + u

(n)
j+1

)
(1)

=⇒ u
(n+1)
j =

(
1− 2∆t

a2

)
u

(n)
j +

∆t

a2

(
u

(n)
j+1 + u

(n)
j−1

)
It is straightforward to iterate this forward in time from n = 0.



Stability issues

Discretization of time-dep PDE’s often leads to instabilities /
I If discretization scheme is unstable, small errors blow up with time

evolution.
I Origin of errors? E.g., machine precision
I Error in each step can be, e.g., of order ∆t(∆x)2

Instability is due to continued time evolution, not single-step error

Think of u(m) as a vector at each timestep.
Explicit schemes like FTCS: um+1 = Aum

Scheme is stable if A has |eigenvalues| < 1.

Alternative analysis: von Neumann stability analysis

Later: implicit schemes: Bum+1 = Aum



Stability analysis

von Neumann analysis

Fourier transform in space: u(x) =
∑

k e
ikxu(k)

Each u(k) evolves independently in time
(at least for linear problems with constant coeffs)

This gives the eigenmode evolution

u
(n+1)
k = ξku

(n)
k =⇒ u

(n)
j = u

(0)
0 (ξk)ne ikja (2)

To find amplification factor ξk , substitute (2) into finite difference equation

∣∣ξk ∣∣

> 1 exponential growth, instability

< 1 exponential damping, stability

= 1 more detailed analysis needed

von Neumann stability: |ξk | ≤ 1 ∀k (for ALL k)



Stability for FTCS

Inserting the eigenmode evolution (2) into the FTCS equation (1) gives

ξn+1
k e ijka − ξnke ijka

∆t
=

D

a2
ξnk

(
e ik(j−1)a − 2e ikja + e ik(j+1)a

)
ξk = 1 +

D∆t

a2

(
e−ika − 2 + e ika

)
= 1− 4D∆t

a2
sin2 ka

2

This is always ≤ 1 =⇒ stability requires ξk ≥ −1

=⇒ 4D∆t

a2
sin2 ka

2
≤ 2 .

‘Worst case’: sin2(ka/2) = 1

Stability condition:
∆t

a2
≤ 1

2D



An example

The python file ftcs driver.py solves the diffusion equation with the
initial distribution

u0(x) = u(x , t0) = e−x2/4Dt0 , −5 ≤ x ≤ 5 , t0 = 0.1 ,

and boundary conditions

u(±x0, t) =

√
t0

t
e−x2

0/4Dt , x0 = 5 .

The grid spacing in the x direction has been set to a = 0.05, and the
diffusion constant D = 1.

ftcs driver(dt,t) plots the solution for time step dt at time(s) t.

Run this with dt=0.0012 and see what you get.
Then run with dt=0.0013 and see what happens.



FTCS in 2+1 dimension
Our Ansatz is now

u
(n)
jl = u0ξ

n
ke

ikx j∆xe iky l∆y (3)

For ∆x = ∆y = a the FTCS scheme is

u
(n+1)
jl − u

(n)
jl

∆t
=

D

a2

(
u

(n)
j−1,l + u

(n)
j ,l−1 + u

(n)
j+1,l + u

(n)
j ,l+1 − 4u

(n)
jl

)
Inserting (3) gives

ξk = 1 +
D∆t

a2

(
e−ikxa + e−ikya + e ikxa + e ikya − 4

)
= 1− 4D∆t

a2

(
sin2 kxa

2
+ sin2 kya

2

)

|ξk | ≤ 1 ∀k =⇒ ∆t

a2
≤ 1

4D



Improving stability (want to use larger ∆t)

Stability condition is quite severe /////

We want to model features at large scales λ� a
Typical diffusion time is τ ∼ λ2/D

→ need n = τ
∆t ∼

λ2

a2 time steps

We want to improve accuracy by reducing a
But if a→ a/2 then ∆t → ∆t/4
→ 8 times as much cpu time!

Can we improve on this?



Second order time derivative?

FTCS is first-order accurate in time, second order in space

What about using second-order differencing in time?

Centred Time Centred Space

u
(n+1)
j − u

(n−1)
j

2∆t
=

D

a2

(
u

(n)
j−1 − 2u

(n)
j + u

(n)
j+1

)
von Neumann

ξk −
1

ξk
= −8D∆t

a2
sin2 ka

2

=⇒ ξk = −4D∆t

a2
sin2 ka

2
±
√

1 +
(4D∆t

a2
sin2 ka

2

)2

The (−) mode is unstable for all k and ∆t!
CTCS is unconditionally unstable



Implicit schemes: BTCS
Explicit scheme: ∂2u

∂x2 evaluated at t

Implicit scheme: evaluate at t + ∆t

Backward Time, Centred Space

u
(n+1)
j − u

(n)
j

∆t
=

u
(n+1)
j−1 − 2u

(n+1)
j + u

(n+1)
j+1

a2

=⇒
(

1 +
2∆t

a2

)
u

(n+1)
j − ∆t

a2

(
u

(n+1)
j−1 + u

(n+1)
j+1

)
= u

(n)
j

We get a sparse matrix equation for u(n+1).

von Neumann analysis

ξ − 1

∆t
=

ξ

a2

(
e ika − 2 + e−ika

)
=⇒ ξ =

1

1 + 4∆t
a2 sin2 ka

2

ξ < 1 for all k ,∆t: BTCS is unconditionally stable



Crank–Nicolson

BTCS is stable, but only first-order accurate in time.
How can we get second-order accuracy?

Average FTCS and BTCS!
(the same as taking a centred time derivative around t + ∆t/2)

u
(n+1)
j − u

(n)
j

∆t
=

1

2a2

[
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1︸ ︷︷ ︸

BTCS

+ u
(n)
j+1 − 2u

(n)
j + u

(n)
j−1︸ ︷︷ ︸

FTCS

]

Crank-Nicolson

(
1+

∆t

a2

)
u

(n+1)
j −∆t

2a2

(
u

(n+1)
j−1 +u

(n+1)
j+1

)
=
(

1−∆t

a2

)
u

(n)
j +

∆t

2a2

(
u

(n)
j−1+u

(n)
j+1

)



Stability of Crank-Nicolson

von Neumann analysis

ξ
(

1− −4∆t

2a2
sin2 ka

2

)
= 1 +

−4∆t

2a2
sin2 ka

2

=⇒ ξ =
1− 2∆t

a2 sin2 ka
2

1 + 2∆t
a2 sin2 ka

2

=
1− b2

1 + b2

The modulus of the numerator is always smaller than the denominator

Crank-Nicolson is unconditionally stable

Price of stability

BTCS and Crank-Nicholson are stable, but

implicit methods: need to solve linear set of equations at each step

Bu(m+1) = Au(m) −→ pre-factorize B (LU or Cholesky)



Schrödinger equation

i~
∂Ψ

∂t
= − ~

2m
∇2Ψ + V (~x)Ψ

This can be discretised in the same way as diffusion equation

Important constraint

Time evolution is unitary ⇐⇒ Total probability is conserved

Formally: Ψ(t) = e−iH(t−t0)/~Ψ(t0)

FTCS for Schrödinger equation

Ψ(n+1) = Ψ(n) − i∆t

~
HΨ(n) =

(
1− i∆t

~
H
)

Ψ(n)

This is unconditionally unstable, and not unitary!

BTCS is stable, but still not unitary.



A unitary evolution operator

Use the Cayley form for exp(iH),

e iH∆t ≈
1− 1

2 iH∆t

1 + 1
2 iH∆t

This gives us (
1 +

1

2
iH∆t

)
Ψ(n+1) =

(
1− 1

2
iH∆t

)
Ψ(n)

This is Crank–Nicolson again!
Stable, second-order accurate and unitary.



Schrödinger equation

Widely used methods

Crank-Nicholson type methods
Price: solving linear system at each step

Spectral methods with time splitting

ψ(t + ε) = e−(i/~)(T̂+V̂ )εψ(t) ≈ e−(i/~)T̂ ε/2e−(i/~)V̂ εe−(i/~)T̂ ε/2ψ(t)

Evolve with T̂ in Fourier space, evolve with V̂ in real space.
Price: Fourier and inverse Fourier transforms at each step.



Wave equation
Examples too numerous to list. . .

∂2u

∂t2
− c2∂

2u

∂x2
= 0

has formal solution

u(x , t) = F (x − ct) + G (x + ct) , anyF ,G

The equation can be discretised directly (using staggered leapfrog scheme)
or transformed to two coupled first-order equations,

∂v

∂t
+ c

∂w

∂x
= 0 ,

∂w

∂t
+ c

∂v

∂x
= 0

with v(x , t) =
∂u

∂t
, w(x , t) = −c ∂u

∂x

Courant–Friedrichs–Lewy condition

Any explicit discretisation scheme for wave or advection equation requires

∆t < c∆x



Relaxation methods for static boundary value problems

We want to sove LΦ = ρ, L = elliptic operator, eg. ∇2

Start with initial guess, let system ‘relax’ −→ solution of pde

Diffusion in computer time

∂Φ

∂t
= LΦ− ρ L = elliptic operator, eg. ∇2

→ stationary (late time) solution fulfils LΦ = ρ

We converted the problem to initial value PDE

Applying PDE techniques to solving ODE BVP!!



Relaxation methods for static boundary value problems

Common example: time-independent Schrödinger equation

ĤΨ(x , y) = EΨ(x , y) can be solved for smallest E by evolving

∂

∂t
Ψ(x , y , t) = ĤΨ(x , y , t) to late times

−→ propagation in imaginary time



Summary

von Neumann stability criterion for time evolution equations:

1 Fourier transform in space
2 Find amplification factor ξk for each mode k
3 Stability ⇐⇒ ξk ≤ 1

Forward Time, Centred Space:
Explicit, stable for ∆t ≤ a2/2dD (1+d dim)

Backward Time, Centred Space:
Implicit, unconditionally stable

Both FTCS and BTCS are first order in time

Crank–Nicolson: Average FTCS and BTCS.
Second order in time, unconditionally stable, widely used

Relaxation: applying PDE techniques to ODE BVP’s
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