Single-electron transport in electrically tunable nanomagnets

Ramon Aguado

CSIC, ICMM, Teoria de la Materia Condensada, Madrid, Spain

We study a single-electron transistor (SET) based upon a II-VI semiconductor quantum dot doped with a single-Mn ion. We present evidence that this system behaves like a quantum nanomagnet whose total spin and magnetic anisotropy depend dramatically both on the number of carriers and their orbital nature. Thereby, the magnetic properties of the nanomagnet can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin, giving rise to spin-dependent charging energies and hysteresis in the Coulomb blockade oscillations of the linear conductance.

Back