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Preparation of a GHZ state

Experimental realization
I A first atom in |e1〉 performs a π/2 pulse

|ψ1〉 =
1
√

2
(|e1, 0〉+ |g1, 1〉)

I A second atom in 1/
√

2(|i2〉+ |g2〉) performs a QPG
gate without affecting the field state (QND)
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„
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«

An atom-field-atom GHZ state
I A third atom in |g3〉 can perform a π pulse in order to

read the field state

|ψ3〉 =
1
√

2

„
|e1, g3〉 ⊗

1
√

2
(|i2〉+ |g2〉) + |g1, e3〉 ⊗

1
√

2
(|i2〉 − |g2〉)

«
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Correlation in another basis

EPR correlation for atoms 1 and 3
Measurement of 〈σx ,1σφ,3〉 as in previous experiments.
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 Two atoms signal

Frequency (kHz)
of The e-i two photon 
transition

Pe1e3- Pe1g3- Pg1e3+ Pg1g3

 signal if i 2
 signal if g2
 signal if no at 2

QPG action of atom 2 changes the sign of the correlation
of atoms 1 and 3.
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General conclusion

I Simple quatum gates demonstrated
I most complicated algorithm uses up to 4 qubits and

entangles 3 of them
I complete measurement of the density matrix not

realised (see ion trap experiment)
I early experiment
I data acquisition time too long due to the very low

probability for detecting coincidences (20h for the 3
atom experiment)
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A century of quantum mechanics

● And yet an intriguing theory which defies our 
« classical intuition »

● Many paradoxes as soon as one tries to 
interpret its results
● Entanglement: after interaction 2 subsystems, 

although separated in space, cannot be 
considered as independant

● Superposition principle: Any linear combination 
of physical state is a physical state



The Schrödinger cat 

● A gedanken experiment

● Three related questions
● Why do we need the 

box?
● Why do we found the 

cat dead or alive?
● Why can’t we predict 

the outcome of a 
single realization?

Environment

Preferred basis

?

A cat in a box with an excited 
atom

If the atom desexcite, a setup kills 
the cat

What is the state of the system 
after a half-lifetime of the atom?



Outline

● A cavity QED experiment
● How to create and destroy and restore a coherent 

superposition
● The decoherence in quantum mechanics

● Effect of the size of the system and of the environment
● Monitoring the decoherence

● What can be an optical Schrödinger cat?
● Observing the decoherence

● Beyond decoherence
● Pushing the limits?



A cavity QED experiment 
on complementarity

How to wash out fringes in an interferometer by 
gaining a « which-path » information?

How to restore the interference by manipulating 
the information



The “strangeness” of the quantum 
● Superposition principle and quantum interferences

● The sum of quantum states is yet another possible state
● A system “suspended” between two different classical realities

● Feynman: Young’s slits experiment contains all the mysteries of 
the quantum

1 2Ψ = Ψ + Ψ

0 1 22 ReI I= + Ψ Ψ

D
a

d
λ=

d

D
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Interferometers for photons and atoms

● Mach-Zender

● 2 optical path separated 
by beamsplitters

● Ramsey:

● 2 energy path separated by 
interaction with classical 
field
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Destroying the fringes

● By gaining a “which-path” information on the system

● Microscopic slit: 
● set in motion when deflecting particle. 
● Which path information and no fringes

● Macroscopic slit: 
● impervious to interfering particle. 
● No which path information and fringes

● Wave and particle are complementary aspects of the quantum 
object.

● (From Einstein-Bohr at the 1927 Solvay congress)

One slit is mounted on 
springs



Bohr’s experiment with a Ramsey interferometer

● Illustrating complementarity: Store one Ramsey field in a cavity

● Initial cavity state
● Intermediate atom-cavity state

Ramsey fringes contrast
● Large field

     FRINGES

● Small field
     NO FRINGES

α
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Interferences versus field size

● A microscopic field is 
strongly affected by the 
interaction
● Stores an information 

about the atomic state
● For larger fields the 

« which path » 
information is lost
● Fringes restored
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Interference versus field size (2)
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•Photon number acts 
as the mass of the slit 
in the Young’s 
experiment

•Classical behaviour 
observed for about 10 
photons



Important remarks

● No need to measure the field state
● The mere fact that the information exists destroy 

the interferences
● Close link with entanglement

● Atom and field no longer separable
● Local operation on the atom cannot recover the 

whole information
● Fringes are recoverable

● If one operates on the atom and the field…
● … in order to erase the information



Ramsey “quantum eraser”

● A second interaction with the mode erases the atom-cavity 
entanglement

● Ramsey fringes without fields !
● Quantum interference fringes without external field
● A good tool for quantum manipulations
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Intermediate conclusions

● Any coherent superposition can be created and probed 
in a interferometer experiment

● The fringe contrast is a direct measurement of how much 
« which-path » information one has about the system

● It is in principle possible to manipulate this amount of 
information to restore the coherence

● Cavity QED is an appropriate tool to manipulate those 
concepts in the case of an atom coupled to a few tens of 
photons



A general frame for 
decoherence

 The environment as an unavoidable « which-
path » meter

 Effect of the size of the system
 Link with the measurement theory



Why the box?

● Hide the cat
● Physically: prevent 

diffusion of light on the 
system

● Isolate from its environment

● Coupling with the outside 
world
● Metallic box?

● Blackbody radiation
● Surrounding gaz

● Collision: brownian 
motion

● Vibration: noise
● All those interactions 

provide a « which-path » 
information



Why the cat?
● What is the difference between a photon in an 

interferometer and a cat in a box
● Strength of the coupling with the environment
● Distance (in Hilbert space) between states

Tdec=Trel/Distance

● How to evaluate the distance?
● Depends on the nature of the coupling

● Diffusion of photons: distance = (distance in space) / wavelength

● Not a trivial relaxation mechanism
● But is explained by relaxation theory for simple models

● Final state
● Trace over the environment: statistical mixture



Link with measurement theory
● What is a good meter?

● Coupled to the observed 
system

● Gives an answer that you 
can see with your eye

● Open, macroscopic 
system

● A two step process
● System-meter coupling

● May be unitary
● leads to an entangled 

state
● « which – path » 

information gathered by 
environment

● Coherence is lost
● And unrecoverable if 

the environment is 
huge

Quantum 
system

0
+-

∆x

Environment



Pointer states

● Only a small fraction of the Hilbert space is 
observed
● Example: or , but no 

superpositions
● This « preferred basis » correspond to meter 

state which do not get entangled with the 
environment
● Pointer states

0 +-
0 +-



What is the final state of the cat

● The coherence leaks into the environment
● One has to account for the lack of knowledge

about the environment
● Density matrix description…
● …with a trace over the environment

● ρfin=1/2(|        ><        |+|        ><        |)
0 +-

0 +-
0 +-

0 +-

Statistical mixture of two pointer state

The meter is either pointing one way or the other



A short summary: what is important in 
decoherence

● An open system whose interaction with the 
environment selects a preferred basis

● Pointer states which can be discriminated by a 
classical experience
● Large distance in Hilbert space
● The larger the distance, the faster the process

This is the case of every large system
● Demonstration:

● One never observes a cat dead and alive at the 
same time



Monitoring the decoherence

● Requirements to observe the phenomenon
● A system as isolated as possible

● Long relaxation time
● A mesoscopic system

● Whose « size » can be varied between 
macroscopic and microscopic dimensions 

● An easy way to prepare and analyse coherent 
superpositions of the system

A small coherent field in a cavity is a 
perfect example



Preparing and observing a 
Schrödinger kitten

 Decoherence for a superposition of coherent states of 
light

 How to prepare such a state?

 An interferometric experiment to test the coherence.



Cavity relaxation

● Due to diffraction on the 
surface
● Not perfectly spherical 

over a few mm

● Interaction Hamiltonian:

H=Σ gi(abi
+ + a+bi)

● State at time t:
● At T=0K:

|αe-γ t/2〉 Π|βi(t)〉

● A coherent state 
remains disentangled

● Pointer state
● Energy conservation

Σ |βi(t)|2= |α|2(1-e-γ t)

= n(1-e-γ t)

Mode i



Decoherence of a coherent state 
superposition
● Initial state

1/N(|0〉 +|α〉 ) Π |0〉 i
N=√2+〈 0|α〉 =√2+e-|α|2/2

 ≈ √2 if |α|>>1



Decoherence of a coherent state 
superposition

● Entangled system
● Which-path information 

has leaked to the 
environment

● Contrast:

C=Π i〈 0|βi(t)〉

   =Π e-|βi(t)|2/2= e-Σ|βi(t)|2/2

   =e-|α|2 (1-e-γ t)/2 ≈e-|α|2γt/2

● Decoherence time

Tdec= 2 Tr / |α|2

● At time t:

|0〉  Π |0〉 i +|αe-γ t/2〉 Π|βi(t)〉



A single atom in a coherent field

● Non resonant interaction
● No exchange of energy ω0 ω

ω

|g〉

|e〉

|0〉

|1〉

|2〉

-Ω2(n+1)/4δ

-Ω2n/4δ

-Ω2/4δ

ω

ω

ω+δω

ω+δω

|g,0〉

|e,0〉

|g,1〉

|e,n-1〉

|g,n〉

|e,n〉

|g,n+1〉

δ

Uncoupled Coupled •If δ>>Ω:

    |+,n〉 ≈|g,n〉  and ∆E+,n=-Ω2n/4δ

Cavity frequency

Atom position in
cavity mode

ω

Atom acts as a dielectric that phase 
shifts the field in the cavity…

ωg

… depending on its state

ωe



Another experiment on complementarity

Cavity as an external detector in the 
Ramsey interferometer

Cavity contains initially a coherent 
field

Non-resonant atom-field interaction:
Atom modifies the cavity field 
phase

(index of refraction effect)

Phase shift α 1/ δ ( δ:atom-cavity 
detuning)

"Which path" information:

● Small phase shift (large δ)
(smaller than quantum phase noise)

● field phase almost unchanged
● No which path information
● Standard Ramsey fringes

● Large phase shift (small δ)
(larger than quantum phase noise)

● Cavity fields associated to the 
two paths distinguishable

● Unambiguous which path 
information

● No Ramsey fringes
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Fringes and field state

State transformations
R1    R2

C

Before R1

Before C

After C

After R2

Detection probabilities

Ramsey fringes signal multiplied by

Complementarity

PRL 77, 4887 (96)
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Signal analysis

Fringe signal multiplied by

● Modulus

● Contrast reduction

● Phase

● Phase shift 
corresponding to cavity 
light shifts

Phase leads to a precise (and 
QND) measurement of the 
average photon number

i ie eα αΦ − Φ

2 22 sin / 2n De e− Φ −=

Fringes contrast and phase

● Excellent agreement with 
theoretical predictions.

● Not a trivial fringes washing 
out effect

Calibration of the cavity field 
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Probing the coherence
● Field state after atomic 

detection

● A coherent superposition 
of two 'classical' states. 

● Decoherence will transform 
this superposition into a 
statistical mixture
● Is it possible to study the 

dynamics of this 
phenomenon

● Requires to perform an 
interferometry experiment 
with the cavity state

● A second atom to probe the 
field

● First atom

● Second atom

● Two indistinguishable quantum 
paths to the same final state
● e1g2  and e2g1

● Quantum interferences

( )1

2
+ Φ

−Φ
D

2Φ

−2Φ



Atomic correlations
● A correlation signal

● Independent of Ramsey 
interferometer frequency 

● when Φ is neither 0 nor 
π/2

● 0.5 for a quantum 
superposition

● 0 for a statistical mixture

● 0 for an empty cavity

● Principle of the experiment
● Send a first atom to 

prepare the cat
● Wait for a delay τ
● Send a second probe 

atom 
● Measure η versus τ

● Raw correlation signals
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Seeing the decoherence over time
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Effect of atomic phase shift Effect of field amplitude



What can we say from those results

● It is possible to prepare mesocopic 
superpositions of states
● Schrödinger kitten

● However the coherence is lost very very very 
very fast
● The larger the cat, the faster the phenomenon
● Experimental data in good agreement with 

theory Tdec=Trel/D
● In our case D goes up to 9 photons



How to obtain larger cat states?

● Increase cavity lifetime (i.e. T rel)
● Increase coupling

● Dispersive interaction ∝Ω2/ δ with δ>>Ω
● Resonant interaction ∝Ω

● Increase interaction time (lower atomic 
velocity)

● What is the effect of a resonant atom on a 
mesoscopic coherent field?



Rabi oscillation in a mesoscopic field

● Intermediate regime of a few tens of photons. 
A first insight

● A simple theoretical problem



Collapse and revival
● Collapse: dispersion of field amplitudes due to 

dispersion of photon number

● Revival: rephasing of amplitudes at a finite time 
such that oscillations corresponding to n and 
n+1 come back in phase

● Revival is a genuinely quantum effect



Oscillations in a small coherent field

Brune et al., PRL 76, 1800 (1996)

● Initial state |e,α〉
● |α|2=<n>

● Observation of the collapse 
and revival
● A fourier transform reveals 

the different frequencies Ω
(n)=Ω0√n

● Open questions
● How is the field affected?
● What is happening if <n> 

increases (classical limit)
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All results
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Remark at short time

● time necessary for doing a π/2 pulse
● Complementarity experiment shows that the 

field is not affected
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A more detailed analysis of Rabi oscillation

● Valid in the case of mesoscopic fields ∆n<<n
● Expansion of |Ψ〉  around n=<n> (Gea Banacloche PRL 65, 3385, Buzek et al PRA 

45, 8190)

● First non-trivial order:

● Atomic states slowly rotating in the equatorial plane of the Bloch 
sphere (<n>  times slower than Rabi oscillation) 

● A slowly rotating field state in the Fresnel plane
● Graphical representation of the joint atom-field evolution in a plane

● t=0: 
● both field states coincide with original coherent state
● Atomic states are the classical eigenstates

1
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Atom-field states evolution

c
+Ψ c

−Ψ a
−Ψa

+Ψ

Initial state: a coherent superposition of two states



Atom-field states evolution

c
+Ψ c

−Ψ a
−Ψa

+Ψ

•At most times: 〈 Ψc
-|Ψc

+〉 =0 an atom-field entangled state

•In spite of large photon number: considerable reaction of the atom on the field
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Loss of contrast as the field gets which-path information
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trev/2: atom disentangled from a field in a Schrödinger cat state
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● A direct link between Rabi collapse and complementarity

revival: field phase information is erased



Phase distribution measurement

Heterodyning a coherent field
S

•Inject a coherent field |α>

•Add a coherent amplitude –αeiφ

•Resulting field (within global phase) |α(1-eiφ)>
•Zero final amplitude for φ=0

•Probe final field amplitude with atom in g
•Pg=1 for a zero amplitude

•Pg=1/2 for a large amplitude

•More generally: Pg(φ) reveals field phase distribution

•In technical terms, Pg(φ)=Q distribution

Atom in |g>
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Phase distribution measurement

Heterodyning a coherent field
S

•Inject a coherent field |α>

•Add a coherent amplitude –αeiφ

•Resulting field (within global phase) |α(1-eiφ)>
•Zero final amplitude for φ=0

•Probe final field amplitude with atom in g
•Pg=1 for a zero amplitude

•Pg=1/2 for a large amplitude

•More generally: Pg(φ) reveals field phase distribution

•In technical terms, 2xPg(φ)-1=Q(α) distribution



Coherent field phase distribution

● One can apply the same phase measurement after 
interaction with an atom
● Detection of states |Ψc

+〉  and |Ψc
-〉  
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Phase splitting in quantum Rabi oscillation

● Timing

S

•Inject a coherent field

•Send a first atom: Rabi oscillation and phase shift

•Inject a phase tunable coherent amplitude

•Send a second atom in g: final amplitude read out

1st atom2nd atom



Phase splitting of a mesoscopic field

…versus <n> and interaction time
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Phase splitting in quantum Rabi oscillation
Observed phase versus theoretical phase

Large Shrödinger cat states (up to 40 photons separation)
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How to test that one has a coherent 
superposition for the field state

● Interference between the two states
● Waiting for the revival will do the trick

● If atomic populations oscillates again then it 
proves the coherence

● But interaction time is limited
● Maximum interaction time 100µs for atoms at 

100 m/s
● Revival time for n=25: 300µs



Test of coherence: induced quantum revivals
Initial Rabi rotation,

Collapse

And slow phase rotation

Stark pulse (duration short 
compared to phase rotation). 

Equivalent to a Z rotation by π

Reverse phase rotation

Recombine field components and 
resume Rabi oscillation
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Test of coherence: induced quantum revivals
Initial Rabi rotation,

Collapse

And slow phase rotation

Reverse phase rotation

Recombine field components and 
resume Rabi oscillation

Stark pulse (duration short 

compared to phase rotation). 

Equivalent to a Z rotation by π



Induced quantum revivals (I)
● Effect on the field observed by homodyning

● Two components clearly resolved
● Separated in phase space by a distance of 9 photons
● Associated decoherence time 100 µs

t=0
15 photons injected
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Induced quantum revivals (II)

● Atomic population as a function of π pulse delay

● Contrast decreases when Tπ increases
● simulation of the experimental data
● Main limitation due to inhomogeneous effect (velocity 

dispersion)
● Additional decoherence term
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Conclusion

● Study of decoherence in the frame of cavity 
QED
● A Schödinger cat for a « trapped field »

● In good agreement with theory
● Effect of the size of the cat

● Close relation with the theory of measurement 
in quantum physics
● Possible application and testground for basic 

Quantum information processing experiments



Lecture 4: future directions
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QND detection experiment

Only works for |0> and |1>
If one has 2 photons in the cavity

Rabi frequency Ω0√2≈1.5xΩ0

A 3π pulse is performed |g,2>→|e,1>

One photon is absorbed and atom is neither in g 
or i

2 main problems
A measured qubit can only provide one bit of 
information
Dispersive interaction is required to prevent 
energy exchange for all photon number 



Dispersive interaction

But : light shift
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Parity Measurement

φ

Vacuum |0>

State |1>

State ρ

Φ0=π
For φ=φ* :

If N even, detection in e

If N odd, detection in g
C

C(g)P-(e)PP(n))1(P **

n

n^
==−=∑ φφ

P=+1 for state |2n>

P=-1 for state |2n+1>

1

0

P
(e

)

φ∗

N even

N odd

The measurement of the final atomic state gives the parity operator value

P=eia+a



Photon number decimation

0 1 2 3 4 5 6 7 8
n

P(n)

Pg(n)

0 1 2 3 4 5 6 7 8
n

P(n)

0 1 2 3 4 5 6 7 8
n
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Ramsey interferometer 
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0>

∆Φ(n)=Φ0n=π.n

Initial distribution

Final conditional
probabilities



A complete QND measurement
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Adapt the phase shift per 
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interferometer phase at 
each step

Number of steps:

Ns=Log2(<n>)



The first step of the QND 
measurement

Measurement of the Wigner distribution



Wigner function: an insight into a quantum state

A quasi-probability distribution in phase space.

Characterizes completely the quantum state

Negative for non-classical states.

Describes the motion of a particle or  

a quantum single mode field q

p

Re(α)

Im(α)

Motion

of a particle

Electromagnetic

field



Properties

Definition

By inverse Fourier transform 

In particular 

The probability distribution of x is obtained by integrating W over p

This property should obviously be invariant by rotation in phase 
space

All elements of density matrix derived from W: contains all 
possible information on quantum state.

( )
( ) ( ) ( )†

cos sin , sin cos

ˆ ˆˆ

W q p q p dp

P q q U U q

θ θ θ θ θ

θ

θ θ θ θ

θ ρ θ

− +

= =

∫



Examples of Wigner functions
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How to measure W for the 
electromagnetic field ?

 Propagating fields : « Tomographic » methods

Principle : - Homodyning measures 
marginal distributions P(qθ) for different 

θ
                - inverse Radon transform 
allows reconstruction of W(q,p)

(             medical tomography)

Refs : - Coherent and squeezed states : - Smithey et al., PRL 70, 1244 (1993)

                - Breitenbach et al., Nature 387, 471 (1997)

           - One-photon Fock state : Lvovsky et al., PRL 87, 050402 (2001)

           - α|0>+β|1> : Lvovsky et al., PRL 88, 250401-1 (2002)



RESULTATS EXPERIMENTAUXRESULTATS EXPERIMENTAUX

Smithey et al., PRL 70, 
1244 (1993)

Comprimé Vide 

Breitenbach et al, Nature 387, 
471 (1997)



MESURE COMPLETE DE LA DISTRIBUTION DE WIGNER MESURE COMPLETE DE LA DISTRIBUTION DE WIGNER 
POUR UN PHOTONPOUR UN PHOTON

Lvovsky et al, PRL 87, 050402 (2001)



Other methods

Use the link between W and parity operator

Displace the field and measure parity by determination 
of photon number probability

Direct counting (Banaszek et al for coherent states)

Quantum Rabi oscillations for an ion in a trap (Wineland)

A demanding method. Much more information than the 
mere average parity needed

^ ^ ˆ
W(α) 2Tr(D( α)ρ D(α) )( 1)N= − −



Wigner distribution for a trapped ion

D. Liebfried et al, PRL 77, 4281 (1996), NIST, Boulder

Etat nombre 1n = ( )1
0 1

2
+

Matrice densité

• Same outcome for trapped neutral atom:
- G.Drobny and V. Buzek, PRA 65 053410 (2002)

From the data of C. Salomon et I. Bouchoule



Our approach

))1()α(Dρ)α(D(Tr2)α(W
ˆ^^

−−= N

- Proposed by Lutterbach and Davidovich (Lutterbach et al.
PRL 78 (1997) 2547)

- Based on :

        W is the expectation value of the Parity operator         in 
the displaced state ρ( −α)

)1( N̂−

A) Apply D(-α) Inject –α in cavity mode OK

B) Parity measurement directly gives )1( N̂−

ρ(-α)

D(-α
)

ρ
(-α)

ρ

« parity » operator

ˆ
( 1)N n− =

n+ if n=2k

n− if n=2k+1
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D(-α)
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∆φ

π/2
Dispersive interaction

e-g detection

δ

|g,0>
R1

R2

Testing the method: vacuum state Wigner 
function

•Use Stark effect to tune interferometer phase
•No phase information in cavity field: injected field phase irrelevant
•Finite intrinsic contrast of the Ramsey interferometer



Wigner function of the "vacuum"
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Single photon Wigner function 
measurement
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Wigner function of a "one-photon" Fock state 
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Towards other states
- Cavity QED setup : direct measurement of the field

- Next improvements : - better isolation

       - better detectors 

- In the future : « movie » of the decoherence of a Schrödinger cat
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Phase shift with dispersive atom-field interaction

Non resonant atom: no energy exchange but cavity mode 
frequency shift (atomic index of refraction effect).

Phase shift of the cavity field (slower than in the resonant 
case)
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Absolute measurement of atomic detection 
efficiency

Histogram of field phase reveals exact atom count

Comparison with detected atom counts provides field 
ionization detectors efficiency in a precise and absolute 
way

0.4 atoms samples:

70-90 % detection efficiency



Inject a very large coherent field in the cavity

Send an atomic sample

Different phase shifts for e, g or no atom

Inject homodyning amplitude

Zero amplitude for e. 
Larger for no atom. 

Still larger for g

Read final field amplitude by sending a large number of atoms in g

Final number of atoms in e proportional to photon number

Towards a 100% efficiency atomic detection
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Im(α)

−φ

g

φ

e

e

g



Preliminary experimental results

detection efficiency: 87%

error probability: 0 atom detected as 1: 10% (main present limitation)

e in g: 1.6% 

g in e: 3%

100% detection efficiency within reach with slower atoms: v=150 m/s         
….experiment in progress.
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Experimental conditions:
• 75 photons initially
• v=200 m/s
• δ=50 kHz
• 70 absorber atoms
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A two-cavity experiment
Rydberg atoms and superconducting cavities:

Towards a two-cavity experiment

Creation of non-local mesoscopic Schrödinger cat states
Non-locality and decoherence (real time monitoring of W 
function)

Complex quantum information manipulations
Quantum feedback

Simple algorithms

Three-qubit quantum error correction code



Teleportation of an atomic state
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3'
beam 1

03

2

EPR pair
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1

1'

Davidovich et al,
PHYS REV A 50 R895 (1994) 

• This scheme works for massive particles
• Detection of the 4 Bell states and application of the 
"correction" to the target is possible using a C-Not gate 
(beam 2 and 3)
• The scheme can be compacted to 1 cavity and 1 atomic beam



Entangling two modes of the radiation field

Principle: 

First atom

Initial state

π/2 pulse in Ma

π pulse in Mb

Second atom: 

probes field states

Final transfer rate modulated 
versus the delay at the beat note 
between modes
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Implementation of 3 qubit error correction
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New non-locality explorations

Use a single atom to entangle two mesoscopic fields in the cavity

A non-local Schrödinger cat or a mesoscopic EPR pair

Easily prepared via dispersive atom-cavity interaction



Mesoscopic Bell inequalities

A Bell inequality form adapted to this situation

 Here, Π is the parity operator average. 
Dichotomic variable for which the Bell 
inequalities argument can be used (transforms 
the continuous variable problem in a spin-like 
problem)

Maximum violation for parity entangled states:



Bell inequalities violation

Optimum Bell signal versus γ

A compromise between violation amplitude and 
decoherence: γ²=2



Probing the Wigner function
A second atom to read out both cavities (same 
scheme as for single mode Wigner function)



A difficult but feasible experiment

Bell signal versus time Tc=30 and 300 ms
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