
Introduction to Quantum Algorithms
Part I: Quantum Gates and Simon’s Algorithm

Martin Rötteler

NEC Laboratories America, Inc.
4 Independence Way, Suite 200
Princeton, NJ 08540, U.S.A.

International Summer School on Quantum Information,
Max-Planck-Institut für Physik komplexer Systeme

Dresden, August 31, 2005

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Overview

Today:

Introduction to qubits, quantum gates, and circuits.

Appetizer: Two-bit problem where quantum beats classical!

The power of quantum computing: Simon’s algorithm

Basic principles used:

Computing in superposition

Constructive/destructive interference

Tomorrow: Shor’s algorithm and Grover’s algorithm

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Basics: Quantum Information

Quantum–bit (qubit)

A qubit is a normalized state in C2:

α |0〉+ β |1〉 , α, β ∈ C, where |α|2 + |β|2 = 1.

Quantum register

A quantum register of length n is a collection of qubits
q1, . . . ,qn.

Possible operations / dynamics

A quantum computer can

perform unitary operations on quantum registers

measure single qubits

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Basics: Quantum Information

Quantum–bit (qubit)

A qubit is a normalized state in C2:

α |0〉+ β |1〉 , α, β ∈ C, where |α|2 + |β|2 = 1.

Quantum register

A quantum register of length n is a collection of qubits
q1, . . . ,qn.

Possible operations / dynamics

A quantum computer can

perform unitary operations on quantum registers

measure single qubits

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Basics: Quantum Information

Quantum–bit (qubit)

A qubit is a normalized state in C2:

α |0〉+ β |1〉 , α, β ∈ C, where |α|2 + |β|2 = 1.

Quantum register

A quantum register of length n is a collection of qubits
q1, . . . ,qn.

Possible operations / dynamics

A quantum computer can

perform unitary operations on quantum registers

measure single qubits

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Bits vs Qubits

One classical bit

is in one of the basis states

↑ =̂ High =̂ 1
↓ =̂ Low =̂ 0

Boolean state space:

IF2 = {↑, ↓} = {0,1}

consisting of 2 elements

One quantum bit (qubit)

is in a coherent superposition

|Ψ〉 = α |↑〉+ β |↓〉

of the basis states |↑〉, |↓〉

Quantum state space H2 = C2:{
α |↑〉+ β |↓〉 : |α|2 + |β|2 = 1

}
of 2 dimensions

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Bits vs Qubits

One classical bit

is in one of the basis states

↑ =̂ High =̂ 1
↓ =̂ Low =̂ 0

Boolean state space:

IF2 = {↑, ↓} = {0,1}

consisting of 2 elements

One quantum bit (qubit)

is in a coherent superposition

|Ψ〉 = α |↑〉+ β |↓〉

of the basis states |↑〉, |↓〉

Quantum state space H2 = C2:{
α |↑〉+ β |↓〉 : |α|2 + |β|2 = 1

}
of 2 dimensions

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Bits vs Two Qubits

Two classical bits

Two bits can hold either of the 4 states in the state space
{0,1} × {0,1} = {0,1}2 = {↑↑, ↓↑, ↑↓, ↓↓}.

Two coupled qubits

A register of two coupled qubits can hold any of the states

|Ψ〉 = α |↑↑〉+ β |↓↑〉+ γ |↑↓〉+ δ |↓↓〉

in the state space H2 ⊗H2 = C2 ⊗ C2.

Two separate qubits

Two separate qubits can hold any of the product states

|Ψ1〉⊗ |Ψ2〉 = (α1 |↑〉+ β1 |↓〉)⊗(α2 |↑〉+ β2 |↓〉)

in the state space H2 ⊕H2 ⊂ C2 ⊕ C2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Bits vs Two Qubits

Two classical bits

Two bits can hold either of the 4 states in the state space
{0,1} × {0,1} = {0,1}2 = {↑↑, ↓↑, ↑↓, ↓↓}.

Two coupled qubits

A register of two coupled qubits can hold any of the states

|Ψ〉 = α |↑↑〉+ β |↓↑〉+ γ |↑↓〉+ δ |↓↓〉

in the state space H2 ⊗H2 = C2 ⊗ C2.

Two separate qubits

Two separate qubits can hold any of the product states

|Ψ1〉⊗ |Ψ2〉 = (α1 |↑〉+ β1 |↓〉)⊗(α2 |↑〉+ β2 |↓〉)

in the state space H2 ⊕H2 ⊂ C2 ⊕ C2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Bits vs Two Qubits

Two classical bits

Two bits can hold either of the 4 states in the state space
{0,1} × {0,1} = {0,1}2 = {↑↑, ↓↑, ↑↓, ↓↓}.

Two coupled qubits

A register of two coupled qubits can hold any of the states

|Ψ〉 = α |↑↑〉+ β |↓↑〉+ γ |↑↓〉+ δ |↓↓〉

in the state space H2 ⊗H2 = C2 ⊗ C2.

Two separate qubits

Two separate qubits can hold any of the product states

|Ψ1〉⊗ |Ψ2〉 = (α1 |↑〉+ β1 |↓〉)⊗(α2 |↑〉+ β2 |↓〉)

in the state space H2 ⊕H2 ⊂ C2 ⊕ C2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Many Bits vs Many Qubits

Classical register of n bits

holds one of the 2n states ε = ε1 · · · εn of the state
space {0,1}n = {0,1} × · · · × {0,1}.

Quantum register of n qubits

can hold any coherent superposition

|Ψ〉 =
∑

ε∈{0,1}n

αε1···εn |ε1〉⊗ |ε2〉⊗ · · · ⊗ |εn〉

in the 2n dimensional space H2n = C2⊗C2⊗ · · ·⊗C2 = C2n
.

Product states of n qubits

can only hold a product state

|Ψ1〉⊗ |Ψ2〉⊗ · · ·⊗ |Ψn〉 = (α1 |↑〉+β1 |↓〉)⊗· · ·⊗ (αn |↑〉+βn |↓〉)

(thus, only linear scaling of system and dimension)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Many Bits vs Many Qubits

Classical register of n bits

holds one of the 2n states ε = ε1 · · · εn of the state
space {0,1}n = {0,1} × · · · × {0,1}.

Quantum register of n qubits

can hold any coherent superposition

|Ψ〉 =
∑

ε∈{0,1}n

αε1···εn |ε1〉⊗ |ε2〉⊗ · · · ⊗ |εn〉

in the 2n dimensional space H2n = C2⊗C2⊗ · · ·⊗C2 = C2n
.

Product states of n qubits

can only hold a product state

|Ψ1〉⊗ |Ψ2〉⊗ · · ·⊗ |Ψn〉 = (α1 |↑〉+β1 |↓〉)⊗· · ·⊗ (αn |↑〉+βn |↓〉)

(thus, only linear scaling of system and dimension)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Many Bits vs Many Qubits

Classical register of n bits

holds one of the 2n states ε = ε1 · · · εn of the state
space {0,1}n = {0,1} × · · · × {0,1}.

Quantum register of n qubits

can hold any coherent superposition

|Ψ〉 =
∑

ε∈{0,1}n

αε1···εn |ε1〉⊗ |ε2〉⊗ · · · ⊗ |εn〉

in the 2n dimensional space H2n = C2⊗C2⊗ · · ·⊗C2 = C2n
.

Product states of n qubits

can only hold a product state

|Ψ1〉⊗ |Ψ2〉⊗ · · ·⊗ |Ψn〉 = (α1 |↑〉+β1 |↓〉)⊗· · ·⊗ (αn |↑〉+βn |↓〉)

(thus, only linear scaling of system and dimension)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Our Model of Measurements

von Neumann measurements of one qubit

First, specify a basis B for C2, e. g. {|0〉 , |1〉}. The outcome of
measuring the state α |0〉+ β |1〉 is described by a random
variable X . The probabilities to observe “0” or “1” are given by

Pr(X = 0) = |α|2, Pr(X = 1) = |β|2.

Measuring a state in Cn in an orthonormal basis B

Recall: Orthonormal Basis of CN

B = {|ψi〉 : i = 1, . . . ,N}, where 〈ψi |ψj〉 = δi,j

Let |ϕ〉 =
∑N

i=1 αi |i〉, where
∑N

i=1 |αi |2 = 1. Then
measuring |ϕ〉 in the basis B gives random variable XB

taking values 1, . . . ,N:

Pr(XB = 1) = |〈ψ1|ϕ〉|2, . . . , Pr(XB = N) = |〈ψN |ϕ〉|2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Our Model of Measurements

von Neumann measurements of one qubit

First, specify a basis B for C2, e. g. {|0〉 , |1〉}. The outcome of
measuring the state α |0〉+ β |1〉 is described by a random
variable X . The probabilities to observe “0” or “1” are given by

Pr(X = 0) = |α|2, Pr(X = 1) = |β|2.

Measuring a state in Cn in an orthonormal basis B

Recall: Orthonormal Basis of CN

B = {|ψi〉 : i = 1, . . . ,N}, where 〈ψi |ψj〉 = δi,j

Let |ϕ〉 =
∑N

i=1 αi |i〉, where
∑N

i=1 |αi |2 = 1. Then
measuring |ϕ〉 in the basis B gives random variable XB

taking values 1, . . . ,N:

Pr(XB = 1) = |〈ψ1|ϕ〉|2, . . . , Pr(XB = N) = |〈ψN |ϕ〉|2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Important Types of Operations

Local operations

1N ⊗ U =

U

U
. . .

U

 , where U ∈ U(2).

Conditioned operation: the controlled NOT (CNOT)

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

=̂

1 · · ·
· 1 · ·
· · · 1
· · 1 ·

 =̂ i•

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Important Types of Operations

Local operations

1N ⊗ U =

U

U
. . .

U

 , where U ∈ U(2).

Conditioned operation: the controlled NOT (CNOT)

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

=̂

1 · · ·
· 1 · ·
· · · 1
· · 1 ·

 =̂ i•

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Notation for Quantum Gates

Gate in Feynman notation

H2

@
@�
�

U

s

Corresponding transformation

1√
2

2
664

1 · 1 ·
· 1 · 1
1 · −1 ·
· 1 · −1

3
775

2
664

1 · · ·
· · 1 ·
· 1 · ·
· · · 1

3
775

2
664

1 · · ·
· 1 · ·
· · u11 u12

· · u21 u22

3
775

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Notation for Quantum Gates

Gate in Feynman notation

H2

@
@�
�

U

s

Corresponding transformation

1√
2

2
664

1 · 1 ·
· 1 · 1
1 · −1 ·
· 1 · −1

3
775

2
664

1 · · ·
· · 1 ·
· 1 · ·
· · · 1

3
775

2
664

1 · · ·
· 1 · ·
· · u11 u12

· · u21 u22

3
775

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Constructions for Matrices

Tensor product

T1 ⊗ T2 = (T1 ⊗ I)(I ⊗ T2) =

()()
I ⊗ T2 classically parallel

T1 ⊗ T2 quantum parallel =⇒ independent dynamics
classical: expensive, quantum: easy, since local operations

Direct sum

T1 ⊕ T2 = (T1 ⊕ I)(I ⊕ T2) =

()
I ⊕ T2 conditional operation

T1 ⊕ T2 CASEoperator =⇒ coupled dynamics
classical: easy, quantum: difficult, since entangled

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Constructions for Matrices

Tensor product

T1 ⊗ T2 = (T1 ⊗ I)(I ⊗ T2) =

()()
I ⊗ T2 classically parallel

T1 ⊗ T2 quantum parallel =⇒ independent dynamics
classical: expensive, quantum: easy, since local operations

Direct sum

T1 ⊕ T2 = (T1 ⊕ I)(I ⊕ T2) =

()
I ⊕ T2 conditional operation

T1 ⊕ T2 CASEoperator =⇒ coupled dynamics
classical: easy, quantum: difficult, since entangled

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hadamard Transform

The Hadamard transform on one qubit

H2 =
1√
2

(
1 1
1 −1

)
=

1√
2

∑
x ,y∈IF2

(−1)xy |x〉 〈y | .

The Hadamard transform on n qubits

The n-fold tensor product of H2 is given by

H⊗n
2 =

1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y | ,

where x · y :=
∑n

i=1 xiyi ∈ IF2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hadamard Transform

The Hadamard transform on one qubit

H2 =
1√
2

(
1 1
1 −1

)
=

1√
2

∑
x ,y∈IF2

(−1)xy |x〉 〈y | .

The Hadamard transform on n qubits

The n-fold tensor product of H2 is given by

H⊗n
2 =

1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y | ,

where x · y :=
∑n

i=1 xiyi ∈ IF2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hadamard Transform

Properties of the Hadamard transform

By definition H2 is the following map:

|0〉 7→ 1√
2
(|0〉+ |1〉)

|1〉 7→ 1√
2
(|0〉 − |1〉)

Identity involving the Pauli matrices: H2σxH2 = σz

Identity involving the CNOT gate:

H2

H2

m
• H2

H2

=
m
•

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hadamard Transform

Properties of the Hadamard transform

By definition H2 is the following map:

|0〉 7→ 1√
2
(|0〉+ |1〉)

|1〉 7→ 1√
2
(|0〉 − |1〉)

Identity involving the Pauli matrices: H2σxH2 = σz

Identity involving the CNOT gate:

H2

H2

m
• H2

H2

=
m
•

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hadamard Transform

Properties of the Hadamard transform

By definition H2 is the following map:

|0〉 7→ 1√
2
(|0〉+ |1〉)

|1〉 7→ 1√
2
(|0〉 − |1〉)

Identity involving the Pauli matrices: H2σxH2 = σz

Identity involving the CNOT gate:

H2

H2

m
• H2

H2

=
m
•

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Quantum Gates and Circuits

Elementary quantum gates

U(i) =
..
.

..

.

U i
..
.

..

.

CNOT(i,j) =

..

.

..

.

..

.

•

g j

i

..

.

..

.

..

.

Universal set of gates

Theorem (Barenco et al., 1995):

U(2n) = 〈U(i),CNOT(i,j) : i , j = 1, . . . ,n, i 6= j〉

Quantum gates: main problem

Find efficient factorizations for given U ∈ U(2n)!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Quantum Gates and Circuits

Elementary quantum gates

U(i) =
..
.

..

.

U i
..
.

..

.

CNOT(i,j) =

..

.

..

.

..

.

•

g j

i

..

.

..

.

..

.

Universal set of gates

Theorem (Barenco et al., 1995):

U(2n) = 〈U(i),CNOT(i,j) : i , j = 1, . . . ,n, i 6= j〉

Quantum gates: main problem

Find efficient factorizations for given U ∈ U(2n)!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Quantum Gates and Circuits

Elementary quantum gates

U(i) =
..
.

..

.

U i
..
.

..

.

CNOT(i,j) =

..

.

..

.

..

.

•

g j

i

..

.

..

.

..

.

Universal set of gates

Theorem (Barenco et al., 1995):

U(2n) = 〈U(i),CNOT(i,j) : i , j = 1, . . . ,n, i 6= j〉

Quantum gates: main problem

Find efficient factorizations for given U ∈ U(2n)!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Different Levels of Abstraction

Unitary matrix

U =
1
2

0
BB@

1 1 1 1
1 −1 1 −1
1 1 −1 −1

−1 1 1 −1

1
CCA

Factorized unitary matrix

U= (I ⊗ H2) (I ⊕ σx) (H2 ⊗ I)

=1
2

0
BB@

1 1
1 −1

1 1
1 −1

1
CCA

(
I
σx

)0
BB@

1 1
1 1

1 −1
1 −1

1
CCA

Quantum circuit

H2 g• H2

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Different Levels of Abstraction

Unitary matrix

U =
1
2

0
BB@

1 1 1 1
1 −1 1 −1
1 1 −1 −1

−1 1 1 −1

1
CCA

Factorized unitary matrix

U= (I ⊗ H2) (I ⊕ σx) (H2 ⊗ I)

=1
2

0
BB@

1 1
1 −1

1 1
1 −1

1
CCA

(
I
σx

)0
BB@

1 1
1 1

1 −1
1 −1

1
CCA

Quantum circuit

H2 g• H2

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Different Levels of Abstraction

Unitary matrix

U =
1
2

0
BB@

1 1 1 1
1 −1 1 −1
1 1 −1 −1

−1 1 1 −1

1
CCA

Factorized unitary matrix

U= (I ⊗ H2) (I ⊕ σx) (H2 ⊗ I)

=1
2

0
BB@

1 1
1 −1

1 1
1 −1

1
CCA

(
I
σx

)0
BB@

1 1
1 1

1 −1
1 −1

1
CCA

Quantum circuit

H2 g• H2

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Basic Facts About Boolean Functions

Boolean functions

Any function f : {0,1}n → {0,1}m, where n is the number
of input bits and m the number of output bits is said to be a
Boolean function.

Any Boolean function can be represented by a truth table.
If f = (f1, . . . , fm), this is a matrix of size 2n ×m where in
column i we have the list of values fi(x1, . . . , xn), where
xj ∈ {0,1} for j = 1, . . . ,n.

The number of Boolean functions

There are 22n
Boolean functions f : {0,1}n → {0,1}, i. e.,

functions with n inputs and one output (since we can
assign an arbitrary value for each of the 2n inputs).

There are 2m2n
Boolean functions f : {0,1}n → {0,1}mwith

n inputs and m outputs.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Basic Facts About Boolean Functions

Boolean functions

Any function f : {0,1}n → {0,1}m, where n is the number
of input bits and m the number of output bits is said to be a
Boolean function.

Any Boolean function can be represented by a truth table.
If f = (f1, . . . , fm), this is a matrix of size 2n ×m where in
column i we have the list of values fi(x1, . . . , xn), where
xj ∈ {0,1} for j = 1, . . . ,n.

The number of Boolean functions

There are 22n
Boolean functions f : {0,1}n → {0,1}, i. e.,

functions with n inputs and one output (since we can
assign an arbitrary value for each of the 2n inputs).

There are 2m2n
Boolean functions f : {0,1}n → {0,1}mwith

n inputs and m outputs.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Universal Gates: Classical Computing

Connectives

NOT gate:
x1 x1

0 1
1 0

AND gate:

x1 x2 x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

OR gate:

x1 x2 x1 ∨ x2

0 0 0
0 1 1
1 0 1
1 1 1

NAND gate:

x1 x2 x1 ∧ x2

0 0 1
0 1 1
1 0 1
1 1 0

Theorem
Any deterministic classical circuit and thereby any deterministic classical
computation can be realized by using NAND gates only. Any probabilistic
computation can be realized using NAND gates and in addition one gate
which realizes a fair coin flip.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Universal Gates: Classical Computing

Connectives

NOT gate:
x1 x1

0 1
1 0

AND gate:

x1 x2 x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

OR gate:

x1 x2 x1 ∨ x2

0 0 0
0 1 1
1 0 1
1 1 1

NAND gate:

x1 x2 x1 ∧ x2

0 0 1
0 1 1
1 0 1
1 1 0

Theorem
Any deterministic classical circuit and thereby any deterministic classical
computation can be realized by using NAND gates only. Any probabilistic
computation can be realized using NAND gates and in addition one gate
which realizes a fair coin flip.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Loading More Structure Onto Bits

Finite field of two elements

The set {0,1} can be equipped with a multiplication “·” and
an addition “⊕” such that the field axioms hold.

Truth tables for these operations:

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Then ({0,1}, ·,⊕) becomes a field consisting of two
elements only, also denoted by IF2. A finite field with n
elements exists if and only if n is a prime power.

Important identity: (−1)x⊕y = (−1)x · (−1)y

We can also rewrite CNOT: |x〉 |y〉 7→ |x〉 |x ⊕ y〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Loading More Structure Onto Bits

Finite field of two elements

The set {0,1} can be equipped with a multiplication “·” and
an addition “⊕” such that the field axioms hold.

Truth tables for these operations:

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Then ({0,1}, ·,⊕) becomes a field consisting of two
elements only, also denoted by IF2. A finite field with n
elements exists if and only if n is a prime power.

Important identity: (−1)x⊕y = (−1)x · (−1)y

We can also rewrite CNOT: |x〉 |y〉 7→ |x〉 |x ⊕ y〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Loading More Structure Onto Bits

Finite field of two elements

The set {0,1} can be equipped with a multiplication “·” and
an addition “⊕” such that the field axioms hold.

Truth tables for these operations:

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Then ({0,1}, ·,⊕) becomes a field consisting of two
elements only, also denoted by IF2. A finite field with n
elements exists if and only if n is a prime power.

Important identity: (−1)x⊕y = (−1)x · (−1)y

We can also rewrite CNOT: |x〉 |y〉 7→ |x〉 |x ⊕ y〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Loading More Structure Onto Bits

Finite field of two elements

The set {0,1} can be equipped with a multiplication “·” and
an addition “⊕” such that the field axioms hold.

Truth tables for these operations:

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Then ({0,1}, ·,⊕) becomes a field consisting of two
elements only, also denoted by IF2. A finite field with n
elements exists if and only if n is a prime power.

Important identity: (−1)x⊕y = (−1)x · (−1)y

We can also rewrite CNOT: |x〉 |y〉 7→ |x〉 |x ⊕ y〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Loading More Structure Onto Bits

Finite field of two elements

The set {0,1} can be equipped with a multiplication “·” and
an addition “⊕” such that the field axioms hold.

Truth tables for these operations:

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

Then ({0,1}, ·,⊕) becomes a field consisting of two
elements only, also denoted by IF2. A finite field with n
elements exists if and only if n is a prime power.

Important identity: (−1)x⊕y = (−1)x · (−1)y

We can also rewrite CNOT: |x〉 |y〉 7→ |x〉 |x ⊕ y〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Reversible Computation of Boolean Functions

Basic issue of reversible computing

Suppose, we want to compute a function f : {0,1}n → {0,1}m

that is not reversible. How can we do this?

One possible solution

Define a new Boolean function which takes n + m inputs and
n + m outputs as follows:

F (x , y) := (x , y ⊕ f (x))

Properties of F (x , y)

On the special inputs (x ,0), where x ∈ {0,1}n we obtain
that F (x ,0) = (x , f (x)). Furthermore, F is reversible.

Theorem (Bennett): If f can be computed using K gates,
then F can be computed using 2K + m gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Reversible Computation of Boolean Functions

Basic issue of reversible computing

Suppose, we want to compute a function f : {0,1}n → {0,1}m

that is not reversible. How can we do this?

One possible solution

Define a new Boolean function which takes n + m inputs and
n + m outputs as follows:

F (x , y) := (x , y ⊕ f (x))

Properties of F (x , y)

On the special inputs (x ,0), where x ∈ {0,1}n we obtain
that F (x ,0) = (x , f (x)). Furthermore, F is reversible.

Theorem (Bennett): If f can be computed using K gates,
then F can be computed using 2K + m gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Reversible Computation of Boolean Functions

Basic issue of reversible computing

Suppose, we want to compute a function f : {0,1}n → {0,1}m

that is not reversible. How can we do this?

One possible solution

Define a new Boolean function which takes n + m inputs and
n + m outputs as follows:

F (x , y) := (x , y ⊕ f (x))

Properties of F (x , y)

On the special inputs (x ,0), where x ∈ {0,1}n we obtain
that F (x ,0) = (x , f (x)). Furthermore, F is reversible.

Theorem (Bennett): If f can be computed using K gates,
then F can be computed using 2K + m gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Universal Gates: Reversible Computing

The Toffoli gate “TOF”

x y z x ′ y ′ z ′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

|z〉

|y〉

|x〉

•

•

f |z ⊕ x · y〉

|y〉

|x〉

Theorem (Toffoli, 1981)

Any reversible computation can be realized by using TOF gates
and ancilla (auxiliary) bits which are initialized to 0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Universal Gates: Reversible Computing

The Toffoli gate “TOF”

x y z x ′ y ′ z ′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

|z〉

|y〉

|x〉

•

•

f |z ⊕ x · y〉

|y〉

|x〉

Theorem (Toffoli, 1981)

Any reversible computation can be realized by using TOF gates
and ancilla (auxiliary) bits which are initialized to 0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Reversible Computation of Boolean Functions

More features of the reversible embedding F (x , y)

Possibly, there are reversible functions that compute
G(x ,0) = (f (x), junk(x)) and use use fewer than n +m bits.

Actually, only dlog2(max cy)e many extra bits are needed to
make f reversible, where cy = |{x : f (x) = y}| are the
sizes of the collisions of f .

The advantage of F is its uniform definition.

Computing a function by a quantum circuit

Any function f : {0,1}n → {0,1}m can be computed by means
of the reversible function F : {0,1}n+m → {0,1}n+m. Hence we
can compute f also by a quantum circuit

Uf |x〉 |y〉 = |x〉 |y ⊕ f (x)〉.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Reversible Computation of Boolean Functions

More features of the reversible embedding F (x , y)

Possibly, there are reversible functions that compute
G(x ,0) = (f (x), junk(x)) and use use fewer than n +m bits.

Actually, only dlog2(max cy)e many extra bits are needed to
make f reversible, where cy = |{x : f (x) = y}| are the
sizes of the collisions of f .

The advantage of F is its uniform definition.

Computing a function by a quantum circuit

Any function f : {0,1}n → {0,1}m can be computed by means
of the reversible function F : {0,1}n+m → {0,1}n+m. Hence we
can compute f also by a quantum circuit

Uf |x〉 |y〉 = |x〉 |y ⊕ f (x)〉.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

A Two-Bit Problem

The Deutsch Jozsa problem (most simple case)

Given a Boolean function f : {0,1} → {0,1}. Decide whether
the property f (0) = f (1) holds or not.

The four possible functions

x f (x)

0 0
1 0

x f (x)

0 1
1 1

x f (x)

0 0
1 1

x f (x)

0 1
1 0

Observation

From querying the function only on one input, we cannot
determine whether f (0) = f (1) with certainty. E. g., if the
answer is f (0) = 0, it could be the first or third function.

On the other hand, two queries determine the function
completely. What is the quantum query complexity?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

A Two-Bit Problem

The Deutsch Jozsa problem (most simple case)

Given a Boolean function f : {0,1} → {0,1}. Decide whether
the property f (0) = f (1) holds or not.

The four possible functions

x f (x)

0 0
1 0

x f (x)

0 1
1 1

x f (x)

0 0
1 1

x f (x)

0 1
1 0

Observation

From querying the function only on one input, we cannot
determine whether f (0) = f (1) with certainty. E. g., if the
answer is f (0) = 0, it could be the first or third function.

On the other hand, two queries determine the function
completely. What is the quantum query complexity?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

A Two-Bit Problem

The Deutsch Jozsa problem (most simple case)

Given a Boolean function f : {0,1} → {0,1}. Decide whether
the property f (0) = f (1) holds or not.

The four possible functions

x f (x)

0 0
1 0

x f (x)

0 1
1 1

x f (x)

0 0
1 1

x f (x)

0 1
1 0

Observation

From querying the function only on one input, we cannot
determine whether f (0) = f (1) with certainty. E. g., if the
answer is f (0) = 0, it could be the first or third function.

On the other hand, two queries determine the function
completely. What is the quantum query complexity?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

Computing the function into the phase

|x〉

|0〉−|1〉√
2

Uf

?

?
Computing the effect for different inputs

|x〉 |0〉 − |1〉√
2

7→ |x〉
(
|f (x)〉 − |1⊕ f (x)〉√

2

)
= |x〉 (−1)f (x)

(
|0〉 − |1〉√

2

)
= (−1)f (x) |x〉

(
|0〉 − |1〉√

2

)
Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

Computing the function into the phase

|x〉

|0〉−|1〉√
2

Uf

?

?
Computing the effect for different inputs

|x〉 |0〉 − |1〉√
2

7→ |x〉
(
|f (x)〉 − |1⊕ f (x)〉√

2

)
= |x〉 (−1)f (x)

(
|0〉 − |1〉√

2

)
= (−1)f (x) |x〉

(
|0〉 − |1〉√

2

)
Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

Computing the function into the phase

|x〉

|0〉−|1〉√
2

Uf

?

?
Computing the effect for different inputs

|x〉 |0〉 − |1〉√
2

7→ |x〉
(
|f (x)〉 − |1⊕ f (x)〉√

2

)
= |x〉 (−1)f (x)

(
|0〉 − |1〉√

2

)
= (−1)f (x) |x〉

(
|0〉 − |1〉√

2

)
Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

Computing the function into the phase

|x〉

|0〉−|1〉√
2

Uf

?

?
Computing the effect for different inputs

|x〉 |0〉 − |1〉√
2

7→ |x〉
(
|f (x)〉 − |1⊕ f (x)〉√

2

)
= |x〉 (−1)f (x)

(
|0〉 − |1〉√

2

)
= (−1)f (x) |x〉

(
|0〉 − |1〉√

2

)
Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

Computing the function into the phase

|x〉

|0〉−|1〉√
2

Uf

(−1)f (x) |x〉

|0〉−|1〉√
2

Computing the effect for different inputs

|x〉 |0〉 − |1〉√
2

7→ |x〉
(
|f (x)〉 − |1⊕ f (x)〉√

2

)
= |x〉 (−1)f (x)

(
|0〉 − |1〉√

2

)
= (−1)f (x) |x〉

(
|0〉 − |1〉√

2

)
Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 ?
?

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 ?
?

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 ?
?

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 ?
?

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 ?
?

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 |f (0)⊕ f (1)〉

|1〉

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Hence, we from measuring the first qubit in the computational basis, we
obtain the answer f (0)⊕ f (1) which reveals whether f (0) = f (1) or not.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Phase “Kick-Back” Trick

The quantum algorithm

|0〉

|1〉 H2

H2

Uf

H2

H2 |f (0)⊕ f (1)〉

|1〉

Phase kick-back in superposition

|0〉 |1〉
H⊗2

27→
�
|0〉+ |1〉√

2

��
|0〉 − |1〉√

2

�

Uf7→ 1√
2

(−1)f (0) |0〉
�
|0〉 − |1〉√

2

�
+

1√
2

(−1)f (1) |1〉
�
|0〉 − |1〉√

2

�

=
(−1)f (0)

√
2

�
|0〉+ (−1)f (0)⊕f (1) |1〉

�� |0〉 − |1〉√
2

�

H⊗2
27−→ (−1)f (0) |f (0)⊕ f (1)〉 |1〉

Hence, we from measuring the first qubit in the computational basis, we
obtain the answer f (0)⊕ f (1) which reveals whether f (0) = f (1) or not.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

What can be computed?

The strong Church-Turing thesis

Any reasonable algorithmic process carried out by a physical
machine can be efficiently simulated by a probabilistic Turing
machine. The slow-down for this is at most polynomial.

Efficient computations

Given a problem of size n, an algorithm is said to have a
polynomial running time if the number of steps it needs to find a
solution is bounded by p(n), where p is a polynomial.

How do quantum algorithms fit in?

They can solve problems which are believed to be intractable
for classical computers. There are physically reasonable
algorithmic processes carried which seem to be hard to
simulate for any classical probabilistic Turing machine.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

What can be computed?

The strong Church-Turing thesis

Any reasonable algorithmic process carried out by a physical
machine can be efficiently simulated by a probabilistic Turing
machine. The slow-down for this is at most polynomial.

Efficient computations

Given a problem of size n, an algorithm is said to have a
polynomial running time if the number of steps it needs to find a
solution is bounded by p(n), where p is a polynomial.

How do quantum algorithms fit in?

They can solve problems which are believed to be intractable
for classical computers. There are physically reasonable
algorithmic processes carried which seem to be hard to
simulate for any classical probabilistic Turing machine.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

What can be computed?

The strong Church-Turing thesis

Any reasonable algorithmic process carried out by a physical
machine can be efficiently simulated by a probabilistic Turing
machine. The slow-down for this is at most polynomial.

Efficient computations

Given a problem of size n, an algorithm is said to have a
polynomial running time if the number of steps it needs to find a
solution is bounded by p(n), where p is a polynomial.

How do quantum algorithms fit in?

They can solve problems which are believed to be intractable
for classical computers. There are physically reasonable
algorithmic processes carried which seem to be hard to
simulate for any classical probabilistic Turing machine.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computational Model: Quantum Circuits

Example: quantum circuit

Quantum circuit and corresponding directed acyclic graph.

U1

U2

U3

U4
U5

U6

x1

x2

x3

x4

ss
ss
���*

-
HHHj

-

s
G1HHHj

�
��*�

���

sG2 -
@@R

sG4
���

sG3
���

@@R sG5 -
HHHj

sG6 -
H

HHj

ss
ss
y1

y2

y3

y4

Uniform families of quantum circuits

A family F := {Cn ∈ U(2n) | n ∈ IN} of quantum circuits is called
uniform if there exists a polynomial-time deterministic Turing
machine which computes n 7→ Cn, where n is the problem size.

Theorem (Yao ’93)

Uniform families of quantum circuits and quantum Turing
machines (see Bernstein/Vazirani ’93) are equivalent.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computational Model: Quantum Circuits

Example: quantum circuit

Quantum circuit and corresponding directed acyclic graph.

U1

U2

U3

U4
U5

U6

x1

x2

x3

x4

ss
ss
���*

-
HHHj

-

s
G1HHHj

�
��*�

���

sG2 -
@@R

sG4
���

sG3
���

@@R sG5 -
HHHj

sG6 -
H

HHj

ss
ss
y1

y2

y3

y4

Uniform families of quantum circuits

A family F := {Cn ∈ U(2n) | n ∈ IN} of quantum circuits is called
uniform if there exists a polynomial-time deterministic Turing
machine which computes n 7→ Cn, where n is the problem size.

Theorem (Yao ’93)

Uniform families of quantum circuits and quantum Turing
machines (see Bernstein/Vazirani ’93) are equivalent.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computational Model: Quantum Circuits

Example: quantum circuit

Quantum circuit and corresponding directed acyclic graph.

U1

U2

U3

U4
U5

U6

x1

x2

x3

x4

ss
ss
���*

-
HHHj

-

s
G1HHHj

�
��*�

���

sG2 -
@@R

sG4
���

sG3
���

@@R sG5 -
HHHj

sG6 -
H

HHj

ss
ss
y1

y2

y3

y4

Uniform families of quantum circuits

A family F := {Cn ∈ U(2n) | n ∈ IN} of quantum circuits is called
uniform if there exists a polynomial-time deterministic Turing
machine which computes n 7→ Cn, where n is the problem size.

Theorem (Yao ’93)

Uniform families of quantum circuits and quantum Turing
machines (see Bernstein/Vazirani ’93) are equivalent.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Asymptotics of Functions

Landau notation

We use Landau notation to compare the asymptotics of two
functions f ,g : IN → C. Typically, f is the running time for an
algorithm for input of size n and g is another function.

f (n) = O(g(n)) means that for some m there exists a
constant c > 0, such that |f (n)| ≤ cg(n) for all n ≥ m.

f (n) = Ω(g(n)) means that for some m there exists a
constant c > 0, such that |f (n)| ≥ cg(n) for all n ≥ m.

f (n) = Θ(g(n)) means that both f (n) = O(g(n)) and
f (n) = Ω(g(n)) hold.

Example

Let f (n) be number of operations needed to compute a
classical FFT of a vector of length n. Then f (n) = O(n log(n)).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Asymptotics of Functions

Landau notation

We use Landau notation to compare the asymptotics of two
functions f ,g : IN → C. Typically, f is the running time for an
algorithm for input of size n and g is another function.

f (n) = O(g(n)) means that for some m there exists a
constant c > 0, such that |f (n)| ≤ cg(n) for all n ≥ m.

f (n) = Ω(g(n)) means that for some m there exists a
constant c > 0, such that |f (n)| ≥ cg(n) for all n ≥ m.

f (n) = Θ(g(n)) means that both f (n) = O(g(n)) and
f (n) = Ω(g(n)) hold.

Example

Let f (n) be number of operations needed to compute a
classical FFT of a vector of length n. Then f (n) = O(n log(n)).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computational Complexity

Measuring the problem size

Usually algorithms can use different kinds of resources.
Typical examples for resources which can be measured
are time , space , depth , and queries .

The resources needed are always measured as a function
of the input size.

Examples

Consider the problem of multiplying two n-bit numbers.
Clearly, this can be done in O(n2) additions and
multiplications using the school method. The best known
method uses O(n log n log log n) operations.

The converse problem of factoring an n-bit number N into
its prime factors is much harder. The currently best known
algorithm needs exp

(
c(log N)1/3(log log N)2/3

)
operations.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computational Complexity

Measuring the problem size

Usually algorithms can use different kinds of resources.
Typical examples for resources which can be measured
are time , space , depth , and queries .

The resources needed are always measured as a function
of the input size.

Examples

Consider the problem of multiplying two n-bit numbers.
Clearly, this can be done in O(n2) additions and
multiplications using the school method. The best known
method uses O(n log n log log n) operations.

The converse problem of factoring an n-bit number N into
its prime factors is much harder. The currently best known
algorithm needs exp

(
c(log N)1/3(log log N)2/3

)
operations.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Query Problems

Query complexity and black boxes

Instead of counting the number of operations we can count
the number of queries to f in order to solve the problem.

Often upper and lower bounds can be shown for the query
complexity model only.

Black-box model: we assume that we are given a function
f but cannot analyze how f is actually implemented.

Most real-world problems are actually white-box, for
example FACTORING, GRAPH-ISO, etc. Lower bounds in
the white-box problems are typically very weak.

Examples

Black box problems: Simon’s algorithm, Grover’s algorithm.

White-box problems: Factoring and dlog, phase estimation.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Query Problems

Query complexity and black boxes

Instead of counting the number of operations we can count
the number of queries to f in order to solve the problem.

Often upper and lower bounds can be shown for the query
complexity model only.

Black-box model: we assume that we are given a function
f but cannot analyze how f is actually implemented.

Most real-world problems are actually white-box, for
example FACTORING, GRAPH-ISO, etc. Lower bounds in
the white-box problems are typically very weak.

Examples

Black box problems: Simon’s algorithm, Grover’s algorithm.

White-box problems: Factoring and dlog, phase estimation.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

The XOR bit mask problem

We consider only functions f : {0,1}n → {0,1}n for which there
exists s ∈ {0,1}n such that

∀x ∈ {0,1}n we have f (x) = f (x ⊕ s),

∀x , y ∈ {0,1}n we have that if x 6= y ⊕ s, then f (x) 6= f (y).

The task is to find the hidden string s.

Example where f : {0,1}3 → {0,1}3

0 0 0 1 1 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 0 0 1

Here s = (0, 1, 1).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

The XOR bit mask problem

We consider only functions f : {0,1}n → {0,1}n for which there
exists s ∈ {0,1}n such that

∀x ∈ {0,1}n we have f (x) = f (x ⊕ s),

∀x , y ∈ {0,1}n we have that if x 6= y ⊕ s, then f (x) 6= f (y).

The task is to find the hidden string s.

Example where f : {0,1}3 → {0,1}3

0 0 0 1 1 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 0 0 1

Here s = (0, 1, 1).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

The XOR bit mask problem

We consider only functions f : {0,1}n → {0,1}n for which there
exists s ∈ {0,1}n such that

∀x ∈ {0,1}n we have f (x) = f (x ⊕ s),

∀x , y ∈ {0,1}n we have that if x 6= y ⊕ s, then f (x) 6= f (y).

The task is to find the hidden string s.

Example where f : {0,1}3 → {0,1}3

0 0 0 1 1 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 0 0
1 1 0 0 0 0
1 1 1 0 0 1

Here s = (0, 1, 1).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

Some comments about Simon’s problem

There is some similarity to the Deutsch-Jozsa problem,
however, here the task is not to distinguish between two
cases (constant vs balanced) but between exponentially
many cases (one for each unknown string s).

Problem might seem artificial, but Shor’s algorithm has the
same underlying idea. Note: This is a promise problem!

Problem gave the first strong (polynomial vs exponential)
separation between quantum and classical computing.
Before that only super-polynomial separations were known.

Literature

D. R. Simon.
On the Power of Quantum Computation.
Proc. FOCS 94, 116–123. IEEE, 1994.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

Some comments about Simon’s problem

There is some similarity to the Deutsch-Jozsa problem,
however, here the task is not to distinguish between two
cases (constant vs balanced) but between exponentially
many cases (one for each unknown string s).

Problem might seem artificial, but Shor’s algorithm has the
same underlying idea. Note: This is a promise problem!

Problem gave the first strong (polynomial vs exponential)
separation between quantum and classical computing.
Before that only super-polynomial separations were known.

Literature

D. R. Simon.
On the Power of Quantum Computation.
Proc. FOCS 94, 116–123. IEEE, 1994.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

Some comments about Simon’s problem

There is some similarity to the Deutsch-Jozsa problem,
however, here the task is not to distinguish between two
cases (constant vs balanced) but between exponentially
many cases (one for each unknown string s).

Problem might seem artificial, but Shor’s algorithm has the
same underlying idea. Note: This is a promise problem!

Problem gave the first strong (polynomial vs exponential)
separation between quantum and classical computing.
Before that only super-polynomial separations were known.

Literature

D. R. Simon.
On the Power of Quantum Computation.
Proc. FOCS 94, 116–123. IEEE, 1994.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem

Some comments about Simon’s problem

There is some similarity to the Deutsch-Jozsa problem,
however, here the task is not to distinguish between two
cases (constant vs balanced) but between exponentially
many cases (one for each unknown string s).

Problem might seem artificial, but Shor’s algorithm has the
same underlying idea. Note: This is a promise problem!

Problem gave the first strong (polynomial vs exponential)
separation between quantum and classical computing.
Before that only super-polynomial separations were known.

Literature

D. R. Simon.
On the Power of Quantum Computation.
Proc. FOCS 94, 116–123. IEEE, 1994.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Specification

How the function f is given

We are given f as a black
box in form of a quantum
circuit computing Uf : |y〉

|x〉

Uf

|y ⊕ f (x)〉

|x〉

How can we query f?

Classical algorithm: makes queries x1, . . . , xk resulting in
the answers f (x1), . . . , f (xk) (counts as k queries).

Quantum algorithm: can query in superposition, i. e.,
starting with the state |ϕ〉 =

∑k
i=1 |xi〉 results in

Uf |ϕ〉 |0〉 =
k∑

i=1

Uf |xi〉 |0〉 =
k∑

i=1

|xi〉 |f (xi)〉 .

This counts as one query!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Specification

How the function f is given

We are given f as a black
box in form of a quantum
circuit computing Uf : |y〉

|x〉

Uf

|y ⊕ f (x)〉

|x〉

How can we query f?

Classical algorithm: makes queries x1, . . . , xk resulting in
the answers f (x1), . . . , f (xk) (counts as k queries).

Quantum algorithm: can query in superposition, i. e.,
starting with the state |ϕ〉 =

∑k
i=1 |xi〉 results in

Uf |ϕ〉 |0〉 =
k∑

i=1

Uf |xi〉 |0〉 =
k∑

i=1

|xi〉 |f (xi)〉 .

This counts as one query!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Specification

How the function f is given

We are given f as a black
box in form of a quantum
circuit computing Uf : |y〉

|x〉

Uf

|y ⊕ f (x)〉

|x〉

How can we query f?

Classical algorithm: makes queries x1, . . . , xk resulting in
the answers f (x1), . . . , f (xk) (counts as k queries).

Quantum algorithm: can query in superposition, i. e.,
starting with the state |ϕ〉 =

∑k
i=1 |xi〉 results in

Uf |ϕ〉 |0〉 =
k∑

i=1

Uf |xi〉 |0〉 =
k∑

i=1

|xi〉 |f (xi)〉 .

This counts as one query!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Measuring the State of the System

Partial measurements / “non-demolition” measurements

Suppose we are given a Boolean function
f : {0,1}n → {0,1} and have prepared the state

|ψ〉 =
1

2n/2

∑
x∈{0,1}n

αx |x〉 |f (x)〉

=
1

2n/2

 ∑
x :f (x)=0

αx |x〉 |0〉+
∑

x :f (x)=1

αx |x〉 |1〉

 .

Measuring the last qubit gives a random variable X .

Pr(X = 0) =
∑

x :f (x)=0

|αx |2, Pr(X = 1) =
∑

x :f (x)=1

|αx |2.

This talk: We only consider von Neumann measurements
of some (or all) of the qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Measuring the State of the System

Partial measurements / “non-demolition” measurements

Suppose we are given a Boolean function
f : {0,1}n → {0,1} and have prepared the state

|ψ〉 =
1

2n/2

∑
x∈{0,1}n

αx |x〉 |f (x)〉

=
1

2n/2

 ∑
x :f (x)=0

αx |x〉 |0〉+
∑

x :f (x)=1

αx |x〉 |1〉

 .

Measuring the last qubit gives a random variable X .

Pr(X = 0) =
∑

x :f (x)=0

|αx |2, Pr(X = 1) =
∑

x :f (x)=1

|αx |2.

This talk: We only consider von Neumann measurements
of some (or all) of the qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Measuring the State of the System

Partial measurements / “non-demolition” measurements

Suppose we are given a Boolean function
f : {0,1}n → {0,1} and have prepared the state

|ψ〉 =
1

2n/2

∑
x∈{0,1}n

αx |x〉 |f (x)〉

=
1

2n/2

 ∑
x :f (x)=0

αx |x〉 |0〉+
∑

x :f (x)=1

αx |x〉 |1〉

 .

Measuring the last qubit gives a random variable X .

Pr(X = 0) =
∑

x :f (x)=0

|αx |2, Pr(X = 1) =
∑

x :f (x)=1

|αx |2.

This talk: We only consider von Neumann measurements
of some (or all) of the qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Measuring the State of the System

Why partial/“non-demolition” measurements

We can still work with the collapsed state! For instance if
measuring the last qubit of

|ψ〉 =
1

2n/2

 ∑
x :f (x)=0

αx |x〉 |0〉+
∑

x :f (x)=1

αx |x〉 |1〉

yields the result X = “1′′, then the collapsed state is

|ψ1〉 =
1√
s1

∑
x :f (x)=1

αx |x〉 , where s1 = |{x : f (x) = 1}|.

Note: cannot be used to find solutions to f (x) = 1. Why?

Further reading: the most general operation which can be
applied to a quantum system in order to obtain classical
information is a POVM (positive operator valued measure).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Measuring the State of the System

Why partial/“non-demolition” measurements

We can still work with the collapsed state! For instance if
measuring the last qubit of

|ψ〉 =
1

2n/2

 ∑
x :f (x)=0

αx |x〉 |0〉+
∑

x :f (x)=1

αx |x〉 |1〉

yields the result X = “1′′, then the collapsed state is

|ψ1〉 =
1√
s1

∑
x :f (x)=1

αx |x〉 , where s1 = |{x : f (x) = 1}|.

Note: cannot be used to find solutions to f (x) = 1. Why?

Further reading: the most general operation which can be
applied to a quantum system in order to obtain classical
information is a POVM (positive operator valued measure).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Measuring the State of the System

Why partial/“non-demolition” measurements

We can still work with the collapsed state! For instance if
measuring the last qubit of

|ψ〉 =
1

2n/2

 ∑
x :f (x)=0

αx |x〉 |0〉+
∑

x :f (x)=1

αx |x〉 |1〉

yields the result X = “1′′, then the collapsed state is

|ψ1〉 =
1√
s1

∑
x :f (x)=1

αx |x〉 , where s1 = |{x : f (x) = 1}|.

Note: cannot be used to find solutions to f (x) = 1. Why?

Further reading: the most general operation which can be
applied to a quantum system in order to obtain classical
information is a POVM (positive operator valued measure).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Preparing Useful States

Creating the uniform superposition

The basic idea is to prepare

|0〉 |0〉
H⊗n

27→ 1√
2n

∑
x∈IFn

2

|x〉 |0〉

Uf7→ 1√
2n

∑
x∈IFn

2

|x〉 |f (x)〉 .

Collapsing the uniform superposition

Now, measuring the second register will yield a random s ∈ IFn
2

in the image of f . The state collapses to

|ϕx0,s〉 =
1√
2
(|x0〉+ |x0 ⊕ s〉).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Preparing Useful States

Creating the uniform superposition

The basic idea is to prepare

|0〉 |0〉
H⊗n

27→ 1√
2n

∑
x∈IFn

2

|x〉 |0〉

Uf7→ 1√
2n

∑
x∈IFn

2

|x〉 |f (x)〉 .

Collapsing the uniform superposition

Now, measuring the second register will yield a random s ∈ IFn
2

in the image of f . The state collapses to

|ϕx0,s〉 =
1√
2
(|x0〉+ |x0 ⊕ s〉).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing the Hadamard Transform

We apply H⊗n
2 to the collapsed states |ϕx0,s〉:

H⊗n
2 |ϕx0,s〉 =

 1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y |

(1√
2
(|x0〉+ |x0 ⊕ s〉)

)

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0 |x〉+
∑
x∈IFn

2

(−1)x ·(x0⊕s) |x〉

=

1√
2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0⊕x ·s)

)
|x〉

=
1√

2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0(−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing the Hadamard Transform

We apply H⊗n
2 to the collapsed states |ϕx0,s〉:

H⊗n
2 |ϕx0,s〉 =

 1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y |

(1√
2
(|x0〉+ |x0 ⊕ s〉)

)

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0 |x〉+
∑
x∈IFn

2

(−1)x ·(x0⊕s) |x〉

=

1√
2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0⊕x ·s)

)
|x〉

=
1√

2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0(−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing the Hadamard Transform

We apply H⊗n
2 to the collapsed states |ϕx0,s〉:

H⊗n
2 |ϕx0,s〉 =

 1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y |

(1√
2
(|x0〉+ |x0 ⊕ s〉)

)

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0 |x〉+
∑
x∈IFn

2

(−1)x ·(x0⊕s) |x〉

=

1√
2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0⊕x ·s)

)
|x〉

=
1√

2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0(−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing the Hadamard Transform

We apply H⊗n
2 to the collapsed states |ϕx0,s〉:

H⊗n
2 |ϕx0,s〉 =

 1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y |

(1√
2
(|x0〉+ |x0 ⊕ s〉)

)

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0 |x〉+
∑
x∈IFn

2

(−1)x ·(x0⊕s) |x〉

=

1√
2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0⊕x ·s)

)
|x〉

=
1√

2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0(−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing the Hadamard Transform

We apply H⊗n
2 to the collapsed states |ϕx0,s〉:

H⊗n
2 |ϕx0,s〉 =

 1
2n/2

∑
x ,y∈IFn

2

(−1)x ·y |x〉 〈y |

(1√
2
(|x0〉+ |x0 ⊕ s〉)

)

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0 |x〉+
∑
x∈IFn

2

(−1)x ·(x0⊕s) |x〉

=

1√
2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0⊕x ·s)

)
|x〉

=
1√

2n+1

∑
x∈IFn

2

(
(−1)x ·x0 |x〉+ (−1)x ·x0(−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Destructive Interference

What have we gained by doing this?

H⊗n
2 |ϕx0,s〉 =

1√
2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2
x ·s=0

(−1)x ·x0 |x〉

Hence measuring this state yields a random element in

〈s〉⊥ = {x ∈ IFn
2|x · s = 0}.

What we really want...

... are elements from 〈s〉 itself (there is only 0 and s itself since
〈s〉 is one-dimensional). How can we compute 〈s〉 from 〈s〉⊥?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Destructive Interference

What have we gained by doing this?

H⊗n
2 |ϕx0,s〉 =

1√
2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2
x ·s=0

(−1)x ·x0 |x〉

Hence measuring this state yields a random element in

〈s〉⊥ = {x ∈ IFn
2|x · s = 0}.

What we really want...

... are elements from 〈s〉 itself (there is only 0 and s itself since
〈s〉 is one-dimensional). How can we compute 〈s〉 from 〈s〉⊥?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Destructive Interference

What have we gained by doing this?

H⊗n
2 |ϕx0,s〉 =

1√
2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2
x ·s=0

(−1)x ·x0 |x〉

Hence measuring this state yields a random element in

〈s〉⊥ = {x ∈ IFn
2|x · s = 0}.

What we really want...

... are elements from 〈s〉 itself (there is only 0 and s itself since
〈s〉 is one-dimensional). How can we compute 〈s〉 from 〈s〉⊥?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Destructive Interference

What have we gained by doing this?

H⊗n
2 |ϕx0,s〉 =

1√
2n+1

∑
x∈IFn

2

(−1)x ·x0
(
1 + (−1)x ·s) |x〉

=
1√

2n+1

∑
x∈IFn

2
x ·s=0

(−1)x ·x0 |x〉

Hence measuring this state yields a random element in

〈s〉⊥ = {x ∈ IFn
2|x · s = 0}.

What we really want...

... are elements from 〈s〉 itself (there is only 0 and s itself since
〈s〉 is one-dimensional). How can we compute 〈s〉 from 〈s〉⊥?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to Simon’s Problem

Quantum algorithm

Given: Function f : {0, 1}n → {0, 1}n with Simon promise, i. e., preimages of
a fixed image have the form x0 and x0 ⊕ s.

Task: Find the unknown bit-string s ∈ IFn
2.

Repeat the following steps n − 1 times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
2n

P
x∈{0,1}n |x〉 |0〉

3. Compute f in superposition: 1√
2n

P
x∈{0,1}n |x〉 |f (x)〉

4. Measure second register: 1√
2
(|x0〉+ |x0 ⊕ s〉) = |ϕx0,s〉

5. Compute H⊗n
2 on first register:

1√
2n+1

X
x∈IFn

2
x·s=0

(−1)x·x0 |x〉

6. Measure first register: Sample y ∈ IFn
2 with y · s = 0.

Further classical post-processing is necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Postprocessing in Simon’s Algorithm

Classical post-processing

After n − 1 iterations: y1, . . . , yn−1 ∈ IFn
2 with yi · s = 0.

We have to infer s by a purely classical computation.

Show high probability of success over the choice of yi .

Linear algebra over IF2

We are given the linear system of equations

A · s =

 y1
...

yn−1

 · s = 0

Hence, we have to compute the kernel of A ∈ IF
(n−1)×n
2 . If the

kernel is one-dimensional, then s is uniquely determined.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Postprocessing in Simon’s Algorithm

Classical post-processing

After n − 1 iterations: y1, . . . , yn−1 ∈ IFn
2 with yi · s = 0.

We have to infer s by a purely classical computation.

Show high probability of success over the choice of yi .

Linear algebra over IF2

We are given the linear system of equations

A · s =

 y1
...

yn−1

 · s = 0

Hence, we have to compute the kernel of A ∈ IF
(n−1)×n
2 . If the

kernel is one-dimensional, then s is uniquely determined.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing in Simon’s Algorithm

The probability of success

Since dim(〈s〉) = 1 we have that dim(〈s〉⊥) = n−1. Hence we have to bound
the probability that n − 1 random vectors in IFn

2 are linear independent:

Pr(rk(A) = n−1) =

�
2n−1 − 1

2n−1

��
2n−1 − 2

2n−1

�
·

�
2n−1 − 2n−2

2n−1

�

=

�
1− 1

2n−1

��
1− 1

2n−2

�
·

�
1− 1

4

�
· 1

2

≥
�

1−
�

1
2n−1

+ . . . +
1
4

��
1
2
≥
�

1− 1
2

�
· 1

2
≥ 1

4

Complexity of the quantum algorithm

We have used n iterations and each individual run uses one query, 2n
Hadamard transforms, and n + 1 single qubit measurements

Postprocessing: Computing the kernel of a matrix of size n × n is linear
algebra and can be solved in time O(n3).

Overall we have found a polynomial-time quantum algorithm.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing in Simon’s Algorithm

The probability of success

Since dim(〈s〉) = 1 we have that dim(〈s〉⊥) = n−1. Hence we have to bound
the probability that n − 1 random vectors in IFn

2 are linear independent:

Pr(rk(A) = n−1) =

�
2n−1 − 1

2n−1

��
2n−1 − 2

2n−1

�
·

�
2n−1 − 2n−2

2n−1

�

=

�
1− 1

2n−1

��
1− 1

2n−2

�
·

�
1− 1

4

�
· 1

2

≥
�

1−
�

1
2n−1

+ . . . +
1
4

��
1
2
≥
�

1− 1
2

�
· 1

2
≥ 1

4

Complexity of the quantum algorithm

We have used n iterations and each individual run uses one query, 2n
Hadamard transforms, and n + 1 single qubit measurements

Postprocessing: Computing the kernel of a matrix of size n × n is linear
algebra and can be solved in time O(n3).

Overall we have found a polynomial-time quantum algorithm.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing in Simon’s Algorithm

The probability of success

Since dim(〈s〉) = 1 we have that dim(〈s〉⊥) = n−1. Hence we have to bound
the probability that n − 1 random vectors in IFn

2 are linear independent:

Pr(rk(A) = n−1) =

�
2n−1 − 1

2n−1

��
2n−1 − 2

2n−1

�
·

�
2n−1 − 2n−2

2n−1

�

=

�
1− 1

2n−1

��
1− 1

2n−2

�
·

�
1− 1

4

�
· 1

2

≥
�

1−
�

1
2n−1

+ . . . +
1
4

��
1
2
≥
�

1− 1
2

�
· 1

2
≥ 1

4

Complexity of the quantum algorithm

We have used n iterations and each individual run uses one query, 2n
Hadamard transforms, and n + 1 single qubit measurements

Postprocessing: Computing the kernel of a matrix of size n × n is linear
algebra and can be solved in time O(n3).

Overall we have found a polynomial-time quantum algorithm.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing in Simon’s Algorithm

The probability of success

Since dim(〈s〉) = 1 we have that dim(〈s〉⊥) = n−1. Hence we have to bound
the probability that n − 1 random vectors in IFn

2 are linear independent:

Pr(rk(A) = n−1) =

�
2n−1 − 1

2n−1

��
2n−1 − 2

2n−1

�
·

�
2n−1 − 2n−2

2n−1

�

=

�
1− 1

2n−1

��
1− 1

2n−2

�
·

�
1− 1

4

�
· 1

2

≥
�

1−
�

1
2n−1

+ . . . +
1
4

��
1
2
≥
�

1− 1
2

�
· 1

2
≥ 1

4

Complexity of the quantum algorithm

We have used n iterations and each individual run uses one query, 2n
Hadamard transforms, and n + 1 single qubit measurements

Postprocessing: Computing the kernel of a matrix of size n × n is linear
algebra and can be solved in time O(n3).

Overall we have found a polynomial-time quantum algorithm.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Theorem

Let A be a classical probabilistic algorithm which determines s
using k queries to the function f . Then k = Ω(2n/2).

Computational complexity theory lingo

Hence there exists an oracle O with respect which we have a
separation between classical and quantum computation:

BPPO 6= BQPO

This is a so-called “relativized result”, i. e., it holds in a
world in which calls to the oracle cost only one query.

Whether this also holds for our world, i. e., without oracles,
is a major open problem in theoretical computer science.

Looking ahead: Why does the fact that FACTORING is in
BQP, whereas no classical algorithm is known for it, does
not imply that BPP 6= BQP?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Theorem

Let A be a classical probabilistic algorithm which determines s
using k queries to the function f . Then k = Ω(2n/2).

Computational complexity theory lingo

Hence there exists an oracle O with respect which we have a
separation between classical and quantum computation:

BPPO 6= BQPO

This is a so-called “relativized result”, i. e., it holds in a
world in which calls to the oracle cost only one query.

Whether this also holds for our world, i. e., without oracles,
is a major open problem in theoretical computer science.

Looking ahead: Why does the fact that FACTORING is in
BQP, whereas no classical algorithm is known for it, does
not imply that BPP 6= BQP?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Theorem

Let A be a classical probabilistic algorithm which determines s
using k queries to the function f . Then k = Ω(2n/2).

Computational complexity theory lingo

Hence there exists an oracle O with respect which we have a
separation between classical and quantum computation:

BPPO 6= BQPO

This is a so-called “relativized result”, i. e., it holds in a
world in which calls to the oracle cost only one query.

Whether this also holds for our world, i. e., without oracles,
is a major open problem in theoretical computer science.

Looking ahead: Why does the fact that FACTORING is in
BQP, whereas no classical algorithm is known for it, does
not imply that BPP 6= BQP?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Theorem

Let A be a classical probabilistic algorithm which determines s
using k queries to the function f . Then k = Ω(2n/2).

Computational complexity theory lingo

Hence there exists an oracle O with respect which we have a
separation between classical and quantum computation:

BPPO 6= BQPO

This is a so-called “relativized result”, i. e., it holds in a
world in which calls to the oracle cost only one query.

Whether this also holds for our world, i. e., without oracles,
is a major open problem in theoretical computer science.

Looking ahead: Why does the fact that FACTORING is in
BQP, whereas no classical algorithm is known for it, does
not imply that BPP 6= BQP?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Theorem

Let A be a classical probabilistic algorithm which determines s
using k queries to the function f . Then k = Ω(2n/2).

Computational complexity theory lingo

Hence there exists an oracle O with respect which we have a
separation between classical and quantum computation:

BPPO 6= BQPO

This is a so-called “relativized result”, i. e., it holds in a
world in which calls to the oracle cost only one query.

Whether this also holds for our world, i. e., without oracles,
is a major open problem in theoretical computer science.

Looking ahead: Why does the fact that FACTORING is in
BQP, whereas no classical algorithm is known for it, does
not imply that BPP 6= BQP?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Sketch of proof of the Ω(2n/2) lower bound

Suppose A makes k queries x1, . . . , xk , where xi 6= xj . Let
Fk := {f (xi) : i = 1, . . . , k} and Ek := {xi ⊕ xj : i 6= j}.
If |Fk | < k then we have found a collision, i. e. a pair (i0, j0)
with f (xi0) = f (xj0). Then s = xi0 ⊕ xj0 .

Suppose there was no collision. Then s 6= Ek and
|Ek | =

(k
2

)
candidates have been eliminated.

However, there are 2n − 1−
(k

2

)
candidates for s. We show

that they are equally likely for a given Fk . Then k = Ω(2n).

Bayes rule:

Pr(s = s0
∣∣|F|k = k) =

Pr(|Fk | = k
∣∣s = s0) · Pr(s = s0)

Pr(|Fk | = k)
.

The a priori probabilities Pr(s = s0) are equal and by
symmetry Pr(|Fk | = k

∣∣s = s0) is independent of s0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Sketch of proof of the Ω(2n/2) lower bound

Suppose A makes k queries x1, . . . , xk , where xi 6= xj . Let
Fk := {f (xi) : i = 1, . . . , k} and Ek := {xi ⊕ xj : i 6= j}.
If |Fk | < k then we have found a collision, i. e. a pair (i0, j0)
with f (xi0) = f (xj0). Then s = xi0 ⊕ xj0 .

Suppose there was no collision. Then s 6= Ek and
|Ek | =

(k
2

)
candidates have been eliminated.

However, there are 2n − 1−
(k

2

)
candidates for s. We show

that they are equally likely for a given Fk . Then k = Ω(2n).

Bayes rule:

Pr(s = s0
∣∣|F|k = k) =

Pr(|Fk | = k
∣∣s = s0) · Pr(s = s0)

Pr(|Fk | = k)
.

The a priori probabilities Pr(s = s0) are equal and by
symmetry Pr(|Fk | = k

∣∣s = s0) is independent of s0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Sketch of proof of the Ω(2n/2) lower bound

Suppose A makes k queries x1, . . . , xk , where xi 6= xj . Let
Fk := {f (xi) : i = 1, . . . , k} and Ek := {xi ⊕ xj : i 6= j}.
If |Fk | < k then we have found a collision, i. e. a pair (i0, j0)
with f (xi0) = f (xj0). Then s = xi0 ⊕ xj0 .

Suppose there was no collision. Then s 6= Ek and
|Ek | =

(k
2

)
candidates have been eliminated.

However, there are 2n − 1−
(k

2

)
candidates for s. We show

that they are equally likely for a given Fk . Then k = Ω(2n).

Bayes rule:

Pr(s = s0
∣∣|F|k = k) =

Pr(|Fk | = k
∣∣s = s0) · Pr(s = s0)

Pr(|Fk | = k)
.

The a priori probabilities Pr(s = s0) are equal and by
symmetry Pr(|Fk | = k

∣∣s = s0) is independent of s0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Sketch of proof of the Ω(2n/2) lower bound

Suppose A makes k queries x1, . . . , xk , where xi 6= xj . Let
Fk := {f (xi) : i = 1, . . . , k} and Ek := {xi ⊕ xj : i 6= j}.
If |Fk | < k then we have found a collision, i. e. a pair (i0, j0)
with f (xi0) = f (xj0). Then s = xi0 ⊕ xj0 .

Suppose there was no collision. Then s 6= Ek and
|Ek | =

(k
2

)
candidates have been eliminated.

However, there are 2n − 1−
(k

2

)
candidates for s. We show

that they are equally likely for a given Fk . Then k = Ω(2n).

Bayes rule:

Pr(s = s0
∣∣|F|k = k) =

Pr(|Fk | = k
∣∣s = s0) · Pr(s = s0)

Pr(|Fk | = k)
.

The a priori probabilities Pr(s = s0) are equal and by
symmetry Pr(|Fk | = k

∣∣s = s0) is independent of s0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Simon’s Problem: Classical Lower Bound

Sketch of proof of the Ω(2n/2) lower bound

Suppose A makes k queries x1, . . . , xk , where xi 6= xj . Let
Fk := {f (xi) : i = 1, . . . , k} and Ek := {xi ⊕ xj : i 6= j}.
If |Fk | < k then we have found a collision, i. e. a pair (i0, j0)
with f (xi0) = f (xj0). Then s = xi0 ⊕ xj0 .

Suppose there was no collision. Then s 6= Ek and
|Ek | =

(k
2

)
candidates have been eliminated.

However, there are 2n − 1−
(k

2

)
candidates for s. We show

that they are equally likely for a given Fk . Then k = Ω(2n).

Bayes rule:

Pr(s = s0
∣∣|F|k = k) =

Pr(|Fk | = k
∣∣s = s0) · Pr(s = s0)

Pr(|Fk | = k)
.

The a priori probabilities Pr(s = s0) are equal and by
symmetry Pr(|Fk | = k

∣∣s = s0) is independent of s0.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

For Further Reading

G. Alber, Th. Beth, M. Horodecki, P. Horodecki,
R. Horodecki, M. Roetteler, H. Weinfurter, and A. Zeilinger.
Quantum Information: An Introduction to Basic Theoretical
Concepts and Experiments.
Springer, 2001.

J. Gruska
Quantum Computing.
McGraw-Hill, 1999.

A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi.
Classical and Quantum Computation.
Graduate Studies in Mathematics, vol. 47, AMS, 2002.

M. Nielsen und I. Chuang.
Quantum Computation and Information.
Cambridge University Press, 2000.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Conclusions

Elementary quantum gates:

Controlled NOT gate

Local unitary transformations

A simple quantum algorithm on two qubits which
distinguishes constant from balanced functions.

Separation: 1 query (quantum) vs 2 queries (classical)

Quantum algorithm for Simon’s problem based on:

Computing with superpositions

Interference of computational paths

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Introduction to Quantum Algorithms
Part II: The Algorithms of Shor and Grover

Martin Rötteler

NEC Laboratories America, Inc.
4 Independence Way, Suite 200
Princeton, NJ 08540, U.S.A.

International Summer School on Quantum Information,
Max-Planck-Institut für Physik komplexer Systeme

Dresden, September 1, 2005

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Overview

Today:
Shor’s algorithm

Modular exponentiation

Period extraction via Quantum Fourier Transform

Classical post-processing

Generalizations of Shor’s algorithm

Grover’s algorithm for searching a list

Universal quantum gates

Outlook:

On September 19, Markus Grassl will continue with an
introduction to quantum error-correcting codes.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Integer Factorization Problem

Basic problem

Given a natural number N. Find a (prime) factor of N.

Best known classical algorithm

The number field sieve has a complexity of

exp
(
(1.923 + o(1))(log N)1/3(log log N)2/3

)
which is (sub)exponential in the number n = log N of bits of N.

Making money with factoring

The company RSA offers $ 200.000 for anybody who can factor
a certain 617 digit number N. This number is known to be of
the form N = pq but finding p and q is infeasible using the best
known classical algorithms.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Integer Factorization Problem

Basic problem

Given a natural number N. Find a (prime) factor of N.

Best known classical algorithm

The number field sieve has a complexity of

exp
(
(1.923 + o(1))(log N)1/3(log log N)2/3

)
which is (sub)exponential in the number n = log N of bits of N.

Making money with factoring

The company RSA offers $ 200.000 for anybody who can factor
a certain 617 digit number N. This number is known to be of
the form N = pq but finding p and q is infeasible using the best
known classical algorithms.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Integer Factorization Problem

Basic problem

Given a natural number N. Find a (prime) factor of N.

Best known classical algorithm

The number field sieve has a complexity of

exp
(
(1.923 + o(1))(log N)1/3(log log N)2/3

)
which is (sub)exponential in the number n = log N of bits of N.

Making money with factoring

The company RSA offers $ 200.000 for anybody who can factor
a certain 617 digit number N. This number is known to be of
the form N = pq but finding p and q is infeasible using the best
known classical algorithms.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The RSA Factoring Challenge

RSA-200 is factored!

In May 2005 a small team of people has factored RSA-200. At
663 bits, this is the largest RSA Challenge Number factored.

The classical effort undertaken

Sieving equivalent of 55 years on a single 2.2 GHz Opteron
CPU. The matrix step took about 3 months on a cluster of 80
2.2 GHz Opterons. Computed from late 2003 to May 2005.

RSA-200 and its factors

N =
27997833911221327870829467638722601621070446786955
42853756000992932612840010760934567105295536085606
18223519109513657886371059544820065767750985805576
13579098734950144178863178946295187237869221823983

p = 35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

q = 79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The RSA Factoring Challenge

RSA-200 is factored!

In May 2005 a small team of people has factored RSA-200. At
663 bits, this is the largest RSA Challenge Number factored.

The classical effort undertaken

Sieving equivalent of 55 years on a single 2.2 GHz Opteron
CPU. The matrix step took about 3 months on a cluster of 80
2.2 GHz Opterons. Computed from late 2003 to May 2005.

RSA-200 and its factors

N =
27997833911221327870829467638722601621070446786955
42853756000992932612840010760934567105295536085606
18223519109513657886371059544820065767750985805576
13579098734950144178863178946295187237869221823983

p = 35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

q = 79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The RSA Factoring Challenge

RSA-200 is factored!

In May 2005 a small team of people has factored RSA-200. At
663 bits, this is the largest RSA Challenge Number factored.

The classical effort undertaken

Sieving equivalent of 55 years on a single 2.2 GHz Opteron
CPU. The matrix step took about 3 months on a cluster of 80
2.2 GHz Opterons. Computed from late 2003 to May 2005.

RSA-200 and its factors

N =
27997833911221327870829467638722601621070446786955
42853756000992932612840010760934567105295536085606
18223519109513657886371059544820065767750985805576
13579098734950144178863178946295187237869221823983

p = 35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

q = 79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Reduction to Order Finding

Reformulating the factoring problem

We can factor N if the following problem can be solved:

Input: A number a with 1 < a < N.

Output: The order r of a modulo N, i. e., the smallest
integer r > 0 such that ar ≡ 1 mod N.

Why is this a reduction?

Suppose we want to find a divisor of N different from +1 or −1.

Pick a random a with 1 < a < N and find its order r

Suppose that r is even (happens with high probability):

0 = (ar − 1) = (ar/2 − 1)(ar/2 + 1) mod N.

If ar/2 6= ±1 then gcd(ar/2 − 1,N) and gcd(ar/2 + 1,N)
yield at least one nontrivial divisor of N.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Reduction to Order Finding

Reformulating the factoring problem

We can factor N if the following problem can be solved:

Input: A number a with 1 < a < N.

Output: The order r of a modulo N, i. e., the smallest
integer r > 0 such that ar ≡ 1 mod N.

Why is this a reduction?

Suppose we want to find a divisor of N different from +1 or −1.

Pick a random a with 1 < a < N and find its order r

Suppose that r is even (happens with high probability):

0 = (ar − 1) = (ar/2 − 1)(ar/2 + 1) mod N.

If ar/2 6= ±1 then gcd(ar/2 − 1,N) and gcd(ar/2 + 1,N)
yield at least one nontrivial divisor of N.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Reduction to Order Finding

Remarks about this reduction

Note that gcd(a,b) of two n-bit integers can be computed
in poly(log(n)) time.

There were two events in which the reduction fails: (i) we
pick a with an odd order r and (ii) ar/2 = ±1. We have to
bound the probability for one of these events to occur.

Theorem

Let N = pµ1
1 . . .pµm

m with m ≥ 2 and pi > 2. Then

Pr(neither (i) nor (ii) occurs) ≥ 1− 1
2m

The big question

How can we efficiently determine the multiplicative order of a
random element a modulo N?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Reduction to Order Finding

Remarks about this reduction

Note that gcd(a,b) of two n-bit integers can be computed
in poly(log(n)) time.

There were two events in which the reduction fails: (i) we
pick a with an odd order r and (ii) ar/2 = ±1. We have to
bound the probability for one of these events to occur.

Theorem

Let N = pµ1
1 . . .pµm

m with m ≥ 2 and pi > 2. Then

Pr(neither (i) nor (ii) occurs) ≥ 1− 1
2m

The big question

How can we efficiently determine the multiplicative order of a
random element a modulo N?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Reduction to Order Finding

Remarks about this reduction

Note that gcd(a,b) of two n-bit integers can be computed
in poly(log(n)) time.

There were two events in which the reduction fails: (i) we
pick a with an odd order r and (ii) ar/2 = ±1. We have to
bound the probability for one of these events to occur.

Theorem

Let N = pµ1
1 . . .pµm

m with m ≥ 2 and pi > 2. Then

Pr(neither (i) nor (ii) occurs) ≥ 1− 1
2m

The big question

How can we efficiently determine the multiplicative order of a
random element a modulo N?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Defining a Period Function

The modular exponentiation map

Let N be an integer and let a ∈ ZN .

Let M be an integer. The modular exponentiation is the
map f : x 7→ (ax mod N) from ZM to ZN .

Result: The map f can be implemented efficiently using
standard arithmetic in O(poly(log N)) operations.

Hence also the map Uf : |x〉 |y〉 7→ |x〉 |ax mod N〉 can be
implemented efficiently.

Recall that the order of a is defined as the smallest integer
r such that ar = 1 mod N.

Observation

The function f : x 7→ (ax mod N) is periodic and has period
length r , i. e., f (x) = f (x + r) for all inputs x .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Defining a Period Function

The modular exponentiation map

Let N be an integer and let a ∈ ZN .

Let M be an integer. The modular exponentiation is the
map f : x 7→ (ax mod N) from ZM to ZN .

Result: The map f can be implemented efficiently using
standard arithmetic in O(poly(log N)) operations.

Hence also the map Uf : |x〉 |y〉 7→ |x〉 |ax mod N〉 can be
implemented efficiently.

Recall that the order of a is defined as the smallest integer
r such that ar = 1 mod N.

Observation

The function f : x 7→ (ax mod N) is periodic and has period
length r , i. e., f (x) = f (x + r) for all inputs x .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Defining a Period Function

The modular exponentiation map

Let N be an integer and let a ∈ ZN .

Let M be an integer. The modular exponentiation is the
map f : x 7→ (ax mod N) from ZM to ZN .

Result: The map f can be implemented efficiently using
standard arithmetic in O(poly(log N)) operations.

Hence also the map Uf : |x〉 |y〉 7→ |x〉 |ax mod N〉 can be
implemented efficiently.

Recall that the order of a is defined as the smallest integer
r such that ar = 1 mod N.

Observation

The function f : x 7→ (ax mod N) is periodic and has period
length r , i. e., f (x) = f (x + r) for all inputs x .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Defining a Period Function

The modular exponentiation map

Let N be an integer and let a ∈ ZN .

Let M be an integer. The modular exponentiation is the
map f : x 7→ (ax mod N) from ZM to ZN .

Result: The map f can be implemented efficiently using
standard arithmetic in O(poly(log N)) operations.

Hence also the map Uf : |x〉 |y〉 7→ |x〉 |ax mod N〉 can be
implemented efficiently.

Recall that the order of a is defined as the smallest integer
r such that ar = 1 mod N.

Observation

The function f : x 7→ (ax mod N) is periodic and has period
length r , i. e., f (x) = f (x + r) for all inputs x .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Defining a Period Function

The modular exponentiation map

Let N be an integer and let a ∈ ZN .

Let M be an integer. The modular exponentiation is the
map f : x 7→ (ax mod N) from ZM to ZN .

Result: The map f can be implemented efficiently using
standard arithmetic in O(poly(log N)) operations.

Hence also the map Uf : |x〉 |y〉 7→ |x〉 |ax mod N〉 can be
implemented efficiently.

Recall that the order of a is defined as the smallest integer
r such that ar = 1 mod N.

Observation

The function f : x 7→ (ax mod N) is periodic and has period
length r , i. e., f (x) = f (x + r) for all inputs x .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Setting up a Periodic State

Observation

The function f : x 7→ ax mod N is periodic and has period
length r , i. e., f (x) = f (x + r) for all inputs x .

The graph of the function f (x) = 2x mod 165

|x〉

|y = f (x)〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Problem: Preparing Useful States

Creating the graph of f

Let f (x) = ax mod N be the modular exponentiation and let
Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f (x)〉 be as usual. We compute (letting
M = 2m)

|0〉 |0〉
H⊗m

27→ 1√
M

∑
x∈ZM

|x〉 |0〉 Uf7→ 1√
M

∑
x∈ZM

|x〉 |f (x)〉 .

Collapsing the graph of f

Now, measuring the second register will yield a random s ∈ ZN

in the image of f . The state collapses to

1√
N/r

N/r−1∑
k=0

|x0 + k · r〉 .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Problem: Preparing Useful States

Creating the graph of f

Let f (x) = ax mod N be the modular exponentiation and let
Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f (x)〉 be as usual. We compute (letting
M = 2m)

|0〉 |0〉
H⊗m

27→ 1√
M

∑
x∈ZM

|x〉 |0〉 Uf7→ 1√
M

∑
x∈ZM

|x〉 |f (x)〉 .

Collapsing the graph of f

Now, measuring the second register will yield a random s ∈ ZN

in the image of f . The state collapses to

1√
N/r

N/r−1∑
k=0

|x0 + k · r〉 .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

An Application of the DFT: Period Extraction

Motivation

We would like to apply the trick from Simon’s algorithm:

|ϕx0,s〉 =
1√
2
(|x0〉+ |x0 ⊕ s〉) 7→ 1√

2n+1

∑
x∈IFn

2
x ·s=0

(−1)x ·x0 |x〉 .

The unknown offset x0 is transfered into the phases.

The analogue of |ϕx0,s〉 in case of the cyclic group ZN is

|ψx0,r 〉 =
1√
N/r

N/r−1∑
k=0

|x0 + k · r〉
-

6

x0

r︷︸︸︷

Again, we would like to transfer x0 into the phases.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

An Application of the DFT: Period Extraction

Motivation

We would like to apply the trick from Simon’s algorithm:

|ϕx0,s〉 =
1√
2
(|x0〉+ |x0 ⊕ s〉) 7→ 1√

2n+1

∑
x∈IFn

2
x ·s=0

(−1)x ·x0 |x〉 .

The unknown offset x0 is transfered into the phases.

The analogue of |ϕx0,s〉 in case of the cyclic group ZN is

|ψx0,r 〉 =
1√
N/r

N/r−1∑
k=0

|x0 + k · r〉
-

6

x0

r︷︸︸︷

Again, we would like to transfer x0 into the phases.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Discrete Fourier Transformation (DFT)

Definition of the DFT

DFTN :=
1√
N

[
ωk ·`

N

]
k ,`=0...N−1

, ωN = e2πi/N

Example

-
DFT

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Estimating Character Sums

Useful trick in quantum computing (Character Lemma)

Lemma: For all i = 0, . . . ,n − 1 the following holds:

n−1∑
j=0

ωij
n = n · δi,0

Proof: Let S :=
∑n−1

j=0 ω
ij
n. Then

ωi
nS =

n−1∑
j=0

ωi
nω

ij
n =

n−1∑
j=0

ω
i(j+1)
n =

n−1∑
j=0

ωij
n = S

If i 6= 0 then ωi
n 6= 1, i. e., (1− ωi

n) 6= 0. Hence S = 0.

If i = 0 then ωi
n = 1 which implies that S = n.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Estimating Character Sums

Useful trick in quantum computing (Character Lemma)

Lemma: For all i = 0, . . . ,n − 1 the following holds:

n−1∑
j=0

ωij
n = n · δi,0

Proof: Let S :=
∑n−1

j=0 ω
ij
n. Then

ωi
nS =

n−1∑
j=0

ωi
nω

ij
n =

n−1∑
j=0

ω
i(j+1)
n =

n−1∑
j=0

ωij
n = S

If i 6= 0 then ωi
n 6= 1, i. e., (1− ωi

n) 6= 0. Hence S = 0.

If i = 0 then ωi
n = 1 which implies that S = n.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Estimating Character Sums

Useful trick in quantum computing (Character Lemma)

Lemma: For all i = 0, . . . ,n − 1 the following holds:

n−1∑
j=0

ωij
n = n · δi,0

Proof: Let S :=
∑n−1

j=0 ω
ij
n. Then

ωi
nS =

n−1∑
j=0

ωi
nω

ij
n =

n−1∑
j=0

ω
i(j+1)
n =

n−1∑
j=0

ωij
n = S

If i 6= 0 then ωi
n 6= 1, i. e., (1− ωi

n) 6= 0. Hence S = 0.

If i = 0 then ωi
n = 1 which implies that S = n.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Estimating Character Sums

Useful trick in quantum computing (Character Lemma)

Lemma: For all i = 0, . . . ,n − 1 the following holds:

n−1∑
j=0

ωij
n = n · δi,0

Proof: Let S :=
∑n−1

j=0 ω
ij
n. Then

ωi
nS =

n−1∑
j=0

ωi
nω

ij
n =

n−1∑
j=0

ω
i(j+1)
n =

n−1∑
j=0

ωij
n = S

If i 6= 0 then ωi
n 6= 1, i. e., (1− ωi

n) 6= 0. Hence S = 0.

If i = 0 then ωi
n = 1 which implies that S = n.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Extracting the Period of a Function

Theorem (Fourier duality)

Let N ∈ IN and let r ∈ ZN be a divisor of N, and let x0 ∈ ZN . Then

DFTN |ψx0,r 〉 = DFTN

0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A =

1√
r

r−1X
`=0

ω
`x0

N
r

N

����`N
r

�

Proof:

DFTN |ψx0,r 〉 =

0
@ 1√

N

N−1X
i,j=0

ωij
N |i〉 〈j|

1
A
0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A

=

√
r

N

N−1X
i=0

0
@N/r−1X

k=0

ω
i(x0+k·r)
N

1
A |i〉

=

√
r

N

N−1X
i=0

ω
ix0
N

� N/r−1X
k=0

ωikr
N

| {z }
=:αi

�
|i〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Extracting the Period of a Function

Theorem (Fourier duality)

Let N ∈ IN and let r ∈ ZN be a divisor of N, and let x0 ∈ ZN . Then

DFTN |ψx0,r 〉 = DFTN

0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A =

1√
r

r−1X
`=0

ω
`x0

N
r

N

����`N
r

�

Proof:

DFTN |ψx0,r 〉 =

0
@ 1√

N

N−1X
i,j=0

ωij
N |i〉 〈j|

1
A
0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A

=

√
r

N

N−1X
i=0

0
@N/r−1X

k=0

ω
i(x0+k·r)
N

1
A |i〉

=

√
r

N

N−1X
i=0

ω
ix0
N

� N/r−1X
k=0

ωikr
N

| {z }
=:αi

�
|i〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Extracting the Period of a Function

Theorem (Fourier duality)

Let N ∈ IN and let r ∈ ZN be a divisor of N, and let x0 ∈ ZN . Then

DFTN |ψx0,r 〉 = DFTN

0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A =

1√
r

r−1X
`=0

ω
`x0

N
r

N

����`N
r

�

Proof:

DFTN |ψx0,r 〉 =

0
@ 1√

N

N−1X
i,j=0

ωij
N |i〉 〈j|

1
A
0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A

=

√
r

N

N−1X
i=0

0
@N/r−1X

k=0

ω
i(x0+k·r)
N

1
A |i〉

=

√
r

N

N−1X
i=0

ω
ix0
N

� N/r−1X
k=0

ωikr
N

| {z }
=:αi

�
|i〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Extracting the Period of a Function

Theorem (Fourier duality)

Let N ∈ IN and let r ∈ ZN be a divisor of N, and let x0 ∈ ZN . Then

DFTN |ψx0,r 〉 = DFTN

0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A =

1√
r

r−1X
`=0

ω
`x0

N
r

N

����`N
r

�

Proof:

DFTN |ψx0,r 〉 =

0
@ 1√

N

N−1X
i,j=0

ωij
N |i〉 〈j|

1
A
0
@ 1p

N/r

N/r−1X
k=0

|x0 + k · r〉

1
A

=

√
r

N

N−1X
i=0

0
@N/r−1X

k=0

ω
i(x0+k·r)
N

1
A |i〉

=

√
r

N

N−1X
i=0

ω
ix0
N

� N/r−1X
k=0

ωikr
N

| {z }
=:αi

�
|i〉

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Constructive / Destructive Interference

Computing the coefficients αi

For each i = 0, . . . ,N −1 we have to compute αi =
∑N/r−1

k=0 ωikr
N .

Case 1: i = N
r ` for some ` = 0, . . . , r − 1. Then

αi =

N/r−1∑
k=0

ω
N
r `kr

N =

N/r−1∑
k=0

1 =
N
r
.

Case 2: i 6= N
r ` for all ` = 0, . . . , r − 1. Then

αi =

N/r−1∑
k=0

(
ω

N
r `kr

N

)k

= 0

by the Character Lemma.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Constructive / Destructive Interference

Computing the coefficients αi

For each i = 0, . . . ,N −1 we have to compute αi =
∑N/r−1

k=0 ωikr
N .

Case 1: i = N
r ` for some ` = 0, . . . , r − 1. Then

αi =

N/r−1∑
k=0

ω
N
r `kr

N =

N/r−1∑
k=0

1 =
N
r
.

Case 2: i 6= N
r ` for all ` = 0, . . . , r − 1. Then

αi =

N/r−1∑
k=0

(
ω

N
r `kr

N

)k

= 0

by the Character Lemma.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Constructive / Destructive Interference

End of proof (Fourier duality)

DFTN |ψx0,r 〉 =

√
r

N

N−1∑
i=0

ωix0
N

(N/r−1∑
k=0

ωikr
N

)
|i〉 =

√
r

N

N−1∑
i=0

ωix0
N αi |i〉

=

√
r

N

r−1∑
`=0

ω
` N

r x0

N
N
r

∣∣∣∣`N
r

〉
=

1√
r

r−1∑
`=0

ω
` N

r x0

N

∣∣∣∣`N
r

〉

What happens if r does not divide N?

In this case the state can be approximated very accurately by

DFTN

(∑
k

|x0 + k · r〉

)
≈
∑

k

ω`µx0
N |`µ〉

with an element µ ∈ ZN such that µr ≈ N.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Constructive / Destructive Interference

End of proof (Fourier duality)

DFTN |ψx0,r 〉 =

√
r

N

N−1∑
i=0

ωix0
N

(N/r−1∑
k=0

ωikr
N

)
|i〉 =

√
r

N

N−1∑
i=0

ωix0
N αi |i〉

=

√
r

N

r−1∑
`=0

ω
` N

r x0

N
N
r

∣∣∣∣`N
r

〉
=

1√
r

r−1∑
`=0

ω
` N

r x0

N

∣∣∣∣`N
r

〉

What happens if r does not divide N?

In this case the state can be approximated very accurately by

DFTN

(∑
k

|x0 + k · r〉

)
≈
∑

k

ω`µx0
N |`µ〉

with an element µ ∈ ZN such that µr ≈ N.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Constructive / Destructive Interference

End of proof (Fourier duality)

DFTN |ψx0,r 〉 =

√
r

N

N−1∑
i=0

ωix0
N

(N/r−1∑
k=0

ωikr
N

)
|i〉 =

√
r

N

N−1∑
i=0

ωix0
N αi |i〉

=

√
r

N

r−1∑
`=0

ω
` N

r x0

N
N
r

∣∣∣∣`N
r

〉
=

1√
r

r−1∑
`=0

ω
` N

r x0

N

∣∣∣∣`N
r

〉

What happens if r does not divide N?

In this case the state can be approximated very accurately by

DFTN

(∑
k

|x0 + k · r〉

)
≈
∑

k

ω`µx0
N |`µ〉

with an element µ ∈ ZN such that µr ≈ N.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Solution to the Period Extraction Problem

Quantum algorithm

Given: Modular exponentiation function Ua : |x〉 |0〉 7→ |x〉 |ax mod N〉.

Task: Find the order r of a modulo N.

Repeat the following steps one time: (w/o normalizations, M = 2m >> N)

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register:
PM−1

x=0 |x〉 |0〉

3. Compute f in superposition:
PM−1

x=0 |x〉 |ax mod N〉

4. Measure second register:
PM/r−1

k=0 |x0 + k · r〉

5. Compute DFTM on first register: ≈
Pr−1

`=0 ω
` N

r x0
M

��`N
r

�

6. Measure first register:
Sample a rational number p

q

which is very close to `0
r .

How can we classically reconstruct r from p
q ?

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing

How to obtain r from p
q ?

Since we know N and `0, we could easily compute r from `0
N
r .

However, we are just given p
q for which we only know that the

following holds ∣∣∣∣pq − `0

r

∣∣∣∣ < 1
2r2

Diophantine approximation

We apply the continued fractions algorithm to p
q . This will lead

to several principal fractions and actually `0
r will be one of them.

Note that we can check whether a candidate r is indeed the
order.

Theorem (Shor ’94)

FACTORING ∈ BQP.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing

How to obtain r from p
q ?

Since we know N and `0, we could easily compute r from `0
N
r .

However, we are just given p
q for which we only know that the

following holds ∣∣∣∣pq − `0

r

∣∣∣∣ < 1
2r2

Diophantine approximation

We apply the continued fractions algorithm to p
q . This will lead

to several principal fractions and actually `0
r will be one of them.

Note that we can check whether a candidate r is indeed the
order.

Theorem (Shor ’94)

FACTORING ∈ BQP.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Classical Post-Processing

How to obtain r from p
q ?

Since we know N and `0, we could easily compute r from `0
N
r .

However, we are just given p
q for which we only know that the

following holds ∣∣∣∣pq − `0

r

∣∣∣∣ < 1
2r2

Diophantine approximation

We apply the continued fractions algorithm to p
q . This will lead

to several principal fractions and actually `0
r will be one of them.

Note that we can check whether a candidate r is indeed the
order.

Theorem (Shor ’94)

FACTORING ∈ BQP.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Diophantine Approximation

The continued fractions algorithm

Input: x ∈ IR. Output: Sequence of bi ∈ Z (possibly infinite) which represents
x . Let b0 := bxc, x1 := 1

x−b0
, b1 := bx1 c, x2 := 1

x1−b1
, Then

x = b0 +
1

b1 + 1
b2+ 1

···

Example with rational input

Suppose that x = 5021264471
8589934592 . The algorithm results in (vector of bi ’s):

[1, 1, 2, 2, 5, 3, 1, 1, 3, 1, 11, 1, 1, 21, 1, 2, 5, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3]

Consider the convergents Cn which are obtained by truncating after n steps:

n 1 2 3 4 5 6 7 8 9 10

Cn 1 1
2

3
5

7
12

38
65

121
207

159
272

280
479

999
1709

1279
2188

n 11 12 13 14 . . . 27

Cn
15608
25777

16347
27965

31415
53742

676062
1156547 . . . 5021264471

8589934592

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Diophantine Approximation

The continued fractions algorithm

Input: x ∈ IR. Output: Sequence of bi ∈ Z (possibly infinite) which represents
x . Let b0 := bxc, x1 := 1

x−b0
, b1 := bx1 c, x2 := 1

x1−b1
, Then

x = b0 +
1

b1 + 1
b2+ 1

···

Example with rational input

Suppose that x = 5021264471
8589934592 . The algorithm results in (vector of bi ’s):

[1, 1, 2, 2, 5, 3, 1, 1, 3, 1, 11, 1, 1, 21, 1, 2, 5, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3]

Consider the convergents Cn which are obtained by truncating after n steps:

n 1 2 3 4 5 6 7 8 9 10

Cn 1 1
2

3
5

7
12

38
65

121
207

159
272

280
479

999
1709

1279
2188

n 11 12 13 14 . . . 27

Cn
15608
25777

16347
27965

31415
53742

676062
1156547 . . . 5021264471

8589934592

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Diophantine Approximation

Lagrange’s Theorem

Let x ∈ Q and assume that we are given p
q ∈ Q such that

����x − p
q

���� ≤ 1
2q2

Then x is a convergent Cn of p
q , namely that for which |Cn − p

q | <
1

2q2 .

Example (cont’d)

Let y = 31415
53742 be the inverse period. Since denominator of y is ≤ 216 we can

work with precision ≤ 233. Suppose we measure p
q = 5021264471

8589934592 :

n 1 2 3 4 5 6 7 8 9 10

Cn 1 1
2

3
5

7
12

38
65

121
207

159
272

280
479

999
1709

1279
2188

n 11 12 13 14 . . . 27

Cn
15608
25777

16347
27965

31415
53742

676062
1156547 . . . 5021264471

8589934592

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Diophantine Approximation

Lagrange’s Theorem

Let x ∈ Q and assume that we are given p
q ∈ Q such that

����x − p
q

���� ≤ 1
2q2

Then x is a convergent Cn of p
q , namely that for which |Cn − p

q | <
1

2q2 .

Example (cont’d)

Let y = 31415
53742 be the inverse period. Since denominator of y is ≤ 216 we can

work with precision ≤ 233. Suppose we measure p
q = 5021264471

8589934592 :

n 1 2 3 4 5 6 7 8 9 10

Cn 1 1
2

3
5

7
12

38
65

121
207

159
272

280
479

999
1709

1279
2188

n 11 12 13 14 . . . 27

Cn
15608
25777

16347
27965

31415
53742

676062
1156547 . . . 5021264471

8589934592

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Parallels between DSP and QC

Digital Signal Processing Quantum Computing

signal f (x)
quantum
information

f =
X

x
f (x)δx

X

x
αx |x〉 |f (x)〉

w 1 w 2

result

w 1 w 2

probabilities

⇓ sampling ⇓ modelling

⇓ transform ⇓ unitary
transform
& measurement

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Example: Fast Fourier Transform (FFT)

Cooley-Tukey FFT

The matrix DFTN = 1√
N

[
ωk ·`

N

]
k ,`=0...N−1, where ωN = e2πi/N

can be written as a short product of sparse matrices.

DFT4 = Πrev · (12 ⊗ DFT2) · diag · (DFT2 ⊗ 12)[1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

]
=

[1
1

1
1

]
·

[1 1
1 −1

1 1
1 −1

]
·

[1
1

1
i

]
·

[1 1
1 1

1 −1
1 −1

]

FFT Theorem

Multiplication with DFTN can be performed classically in
O(N log N) elementary operations.

We can do much better on a quantum computer!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Example: Fast Fourier Transform (FFT)

Cooley-Tukey FFT

The matrix DFTN = 1√
N

[
ωk ·`

N

]
k ,`=0...N−1, where ωN = e2πi/N

can be written as a short product of sparse matrices.

DFT4 = Πrev · (12 ⊗ DFT2) · diag · (DFT2 ⊗ 12)[1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

]
=

[1
1

1
1

]
·

[1 1
1 −1

1 1
1 −1

]
·

[1
1

1
i

]
·

[1 1
1 1

1 −1
1 −1

]

FFT Theorem

Multiplication with DFTN can be performed classically in
O(N log N) elementary operations.

We can do much better on a quantum computer!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Example: Fast Fourier Transform (FFT)

Cooley-Tukey FFT

The matrix DFTN = 1√
N

[
ωk ·`

N

]
k ,`=0...N−1, where ωN = e2πi/N

can be written as a short product of sparse matrices.

DFT4 = Πrev · (12 ⊗ DFT2) · diag · (DFT2 ⊗ 12)[1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

]
=

[1
1

1
1

]
·

[1 1
1 −1

1 1
1 −1

]
·

[1
1

1
i

]
·

[1 1
1 1

1 −1
1 −1

]

FFT Theorem

Multiplication with DFTN can be performed classically in
O(N log N) elementary operations.

We can do much better on a quantum computer!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Example: Fast Fourier Transform (FFT)

Cooley-Tukey FFT

The matrix DFTN = 1√
N

[
ωk ·`

N

]
k ,`=0...N−1, where ωN = e2πi/N

can be written as a short product of sparse matrices.

DFT4 = Πrev · (12 ⊗ DFT2) · diag · (DFT2 ⊗ 12)[1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

]
=

[1
1

1
1

]
·

[1 1
1 −1

1 1
1 −1

]
·

[1
1

1
i

]
·

[1 1
1 1

1 −1
1 −1

]

FFT Theorem

Multiplication with DFTN can be performed classically in
O(N log N) elementary operations.

We can do much better on a quantum computer!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Fast Fourier Transform

Cooley-Tukey Formula

Πn DFT2n =

(
DFT2n−1 DFT2n−1

DFT2n−1 Dn −DFT2n−1 Dn

)

= (12 ⊗ DFT2n−1) · (12n−1 ⊕ Dn) · (DFT2 ⊗ 12n−1)

Factorization of the twiddle factors

Dn :=

1
ω2n

ω2
2n

. . .
ω2n−1−1

2n

 =

(
1
ω2n−2

2n

)
⊗ . . .⊗

(
1
ω2n

)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Fast Fourier Transform

Cooley-Tukey Formula

Πn DFT2n =

(
DFT2n−1 DFT2n−1

DFT2n−1 Dn −DFT2n−1 Dn

)

= (12 ⊗ DFT2n−1) · (12n−1 ⊕ Dn) · (DFT2 ⊗ 12n−1)

Factorization of the twiddle factors

Dn :=

1
ω2n

ω2
2n

. . .
ω2n−1−1

2n

 =

(
1
ω2n−2

2n

)
⊗ . . .⊗

(
1
ω2n

)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Cooley-Tukey Realization of DFT

Quantum circuit for DFTN

...

�
�
�
�
�
�
�

�
�

��@
@

@@

A
A
A
A
A
A
A H2

...

D4

• H2

···
···
···
···
···

DN

•

D N
2

•

···
···
···
···
···

D4

• H2

...

Cost

Classical Computer Quantum Computer
T (N) = 2 T (N/2) + O(N) T (N) = T (N/2) + O(logN))

T (N) = O(N logN) T (N) = O(log2N)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Cooley-Tukey Realization of DFT

Quantum circuit for DFTN

...

�
�
�
�
�
�
�

�
�

��@
@

@@

A
A
A
A
A
A
A H2

...

D4

• H2

···
···
···
···
···

DN

•

D N
2

•

···
···
···
···
···

D4

• H2

...

Cost

Classical Computer Quantum Computer
T (N) = 2 T (N/2) + O(N) T (N) = T (N/2) + O(logN))

T (N) = O(N logN) T (N) = O(log2N)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Gate Counts

Modular exponentiation

U : |x〉 |0〉 7→ |x〉 |ax mod N〉 , where N is the k -bit number to be
factored, and x is a 2k -bit number. Implementation using
396k(k2 + O(k)) elementary operations [Beckman et al.].

Quantum Fourier Transform:

DFT2n needs 1
2n(n − 1) two-qubit gates and n one-qubit gates.

An upper bound on the resources for k -bit number N

About 400k3 operations are needed (can be improved to
O(k2 log k log log k))). The space needed is 5k + 1 qubits.

Example: Factoring 128-bit and 1024-bit numbers

For 128-bit we need 840 · 106 operations and 641 qubits. For
1024-bit number 429 · 109 operations and 5121 qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Gate Counts

Modular exponentiation

U : |x〉 |0〉 7→ |x〉 |ax mod N〉 , where N is the k -bit number to be
factored, and x is a 2k -bit number. Implementation using
396k(k2 + O(k)) elementary operations [Beckman et al.].

Quantum Fourier Transform:

DFT2n needs 1
2n(n − 1) two-qubit gates and n one-qubit gates.

An upper bound on the resources for k -bit number N

About 400k3 operations are needed (can be improved to
O(k2 log k log log k))). The space needed is 5k + 1 qubits.

Example: Factoring 128-bit and 1024-bit numbers

For 128-bit we need 840 · 106 operations and 641 qubits. For
1024-bit number 429 · 109 operations and 5121 qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Gate Counts

Modular exponentiation

U : |x〉 |0〉 7→ |x〉 |ax mod N〉 , where N is the k -bit number to be
factored, and x is a 2k -bit number. Implementation using
396k(k2 + O(k)) elementary operations [Beckman et al.].

Quantum Fourier Transform:

DFT2n needs 1
2n(n − 1) two-qubit gates and n one-qubit gates.

An upper bound on the resources for k -bit number N

About 400k3 operations are needed (can be improved to
O(k2 log k log log k))). The space needed is 5k + 1 qubits.

Example: Factoring 128-bit and 1024-bit numbers

For 128-bit we need 840 · 106 operations and 641 qubits. For
1024-bit number 429 · 109 operations and 5121 qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Shor’s Algorithm: Gate Counts

Modular exponentiation

U : |x〉 |0〉 7→ |x〉 |ax mod N〉 , where N is the k -bit number to be
factored, and x is a 2k -bit number. Implementation using
396k(k2 + O(k)) elementary operations [Beckman et al.].

Quantum Fourier Transform:

DFT2n needs 1
2n(n − 1) two-qubit gates and n one-qubit gates.

An upper bound on the resources for k -bit number N

About 400k3 operations are needed (can be improved to
O(k2 log k log log k))). The space needed is 5k + 1 qubits.

Example: Factoring 128-bit and 1024-bit numbers

For 128-bit we need 840 · 106 operations and 641 qubits. For
1024-bit number 429 · 109 operations and 5121 qubits.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: History of the Problem

D. Simon, 1994

Hidden Subgroups in (Z2)
n.

P. Shor, 1994
− Factoring
− Discrete Logarithm

}
Hidden Subgroups in ZM

resp. ZM × ZM

Kitaev ’95, Brassard & Høyer ’97, Mosca & Ekert ’98

Generalization to arbitrary abelian groups.

Open Problems

Can the Hidden Subgroups Problem be solved for

Any non-abelian group? (yes!)

All non-abelian groups? (don’t know)

“Interesting” non-abelian groups? (progress, but still open)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hidden Subgroup Problem (HSP)

Definition of the problem

Given: Finite group G, finite set S, map f : G → S
Promise: There exists H ⊆ G where

f constant on G/H,

g1H 6= g2H implies f (g1) 6= f (g2).

Problem: Find generators for H.

Note

This is a natural generalization of
Simon’s problem.

There G = F n
2 and in addition we

know |H| = |〈s〉| = 2.

In fact, the HSP for any subgroup
H ≤ IFn

2 can be solved efficiently.

Mathematically

G

π
��

f // S

G/H
i

=={{{{{{{{

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

The Hidden Subgroup Problem (HSP)

Definition of the problem

Given: Finite group G, finite set S, map f : G → S
Promise: There exists H ⊆ G where

f constant on G/H,

g1H 6= g2H implies f (g1) 6= f (g2).

Problem: Find generators for H.

Note

This is a natural generalization of
Simon’s problem.

There G = F n
2 and in addition we

know |H| = |〈s〉| = 2.

In fact, the HSP for any subgroup
H ≤ IFn

2 can be solved efficiently.

Mathematically

G

π
��

f // S

G/H
i

=={{{{{{{{

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

HSP: Separation of Pre-images

Visualization of the cosets of G

H

g H
n

1
g H

...

G R

f

f

f

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for Hidden Subgroup Problems

Simon’s Problem

Find hidden subgroup in G = Zn
2 of a black-box function

f : G → {0,1}m, where m ≤ n and x ∈ y + H ⇔ f (x) = f (y).

Factoring

Find hidden subgroup in G = ZM with respect to the function

f (x) := ax mod N.

Discrete logarithm problem

Find hidden subgroup in G = ZM × ZM with respect to the
function f (x , y) := axb−y mod p.

The graph isomorphism problem

Can be reduced to the problem of finding certain hidden
subgroups of order 2 in the non-abelian group G = Sn o S2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for Hidden Subgroup Problems

Simon’s Problem

Find hidden subgroup in G = Zn
2 of a black-box function

f : G → {0,1}m, where m ≤ n and x ∈ y + H ⇔ f (x) = f (y).

Factoring

Find hidden subgroup in G = ZM with respect to the function

f (x) := ax mod N.

Discrete logarithm problem

Find hidden subgroup in G = ZM × ZM with respect to the
function f (x , y) := axb−y mod p.

The graph isomorphism problem

Can be reduced to the problem of finding certain hidden
subgroups of order 2 in the non-abelian group G = Sn o S2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for Hidden Subgroup Problems

Simon’s Problem

Find hidden subgroup in G = Zn
2 of a black-box function

f : G → {0,1}m, where m ≤ n and x ∈ y + H ⇔ f (x) = f (y).

Factoring

Find hidden subgroup in G = ZM with respect to the function

f (x) := ax mod N.

Discrete logarithm problem

Find hidden subgroup in G = ZM × ZM with respect to the
function f (x , y) := axb−y mod p.

The graph isomorphism problem

Can be reduced to the problem of finding certain hidden
subgroups of order 2 in the non-abelian group G = Sn o S2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for Hidden Subgroup Problems

Simon’s Problem

Find hidden subgroup in G = Zn
2 of a black-box function

f : G → {0,1}m, where m ≤ n and x ∈ y + H ⇔ f (x) = f (y).

Factoring

Find hidden subgroup in G = ZM with respect to the function

f (x) := ax mod N.

Discrete logarithm problem

Find hidden subgroup in G = ZM × ZM with respect to the
function f (x , y) := axb−y mod p.

The graph isomorphism problem

Can be reduced to the problem of finding certain hidden
subgroups of order 2 in the non-abelian group G = Sn o S2.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Duality of the Fourier Transform

Basic identity

DFTA

(1√
|U|

∑
x∈U+c

|x〉
)

=
1√
|U⊥|

∑
y∈U⊥

ϕc,y · |y〉

Geometric interpretation

Shifted
Line

-
DFT

Amplitude

Phase

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Duality of the Fourier Transform

Basic identity

DFTA

(1√
|U|

∑
x∈U+c

|x〉
)

=
1√
|U⊥|

∑
y∈U⊥

ϕc,y · |y〉

Geometric interpretation

Shifted
Line

-
DFT

Amplitude

Phase

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Generalized Fourier Transforms

Definition of DFTG

Any isomorphism Φ : C[G] −→
⊕m

k=1 Cdk×dk of the group
algebra and a direct sum of irreducible matrix algebras.

Some properties of DFTG

Defined for arbitrary finite groups.

The isomorphism Φ is realized by a unitary matrix

DFTG =
1√
|G||H|

∑
ρ,i,j

√
dρ

∑
h∈H

ρij(gh) |ρ, i , j〉 〈g| .

DFTG decomposes the regular representation φ of G:

φDFTG = DFTG
† φ DFTG =

m⊕
k=1

1dρk
⊗ ρk .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Generalized Fourier Transforms

Definition of DFTG

Any isomorphism Φ : C[G] −→
⊕m

k=1 Cdk×dk of the group
algebra and a direct sum of irreducible matrix algebras.

Some properties of DFTG

Defined for arbitrary finite groups.

The isomorphism Φ is realized by a unitary matrix

DFTG =
1√
|G||H|

∑
ρ,i,j

√
dρ

∑
h∈H

ρij(gh) |ρ, i , j〉 〈g| .

DFTG decomposes the regular representation φ of G:

φDFTG = DFTG
† φ DFTG =

m⊕
k=1

1dρk
⊗ ρk .

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Hidden Subgroup Problems: Standard Algorithm

Quantum algorithm

Given: finite group G with hidden subgroup H ≤ G.
Task: Find a set of generators for H.

Repeat the following steps poly(n) many times:

1. Initialize two quantum registers: |0〉 |0〉

2. Equal distribution on first register: 1√
|G|

P
x∈G |x〉 |0〉

3. Compute f in superposition: 1√
|G|

P
x∈G |x〉 |f (x)〉

4. Measure second register: 1√
|H|

P
x∈cH |x〉 |f (c)〉

5. Compute DFTG on first register:
1p
|G||H|

X
ρ,i,j

p
dρ

X
h∈H

ρij(ch) |ρ, i, j〉

6. Measure first register:
Sample (ρ, j) with probabilityP

i
dρ

|G|

��P
h∈H ρij(ch)

��2.

Further classical post-processing necessary!

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Grover’s Algorithm for Searching a List

Searching for a satisfying assignment

Given a Boolean function f : {0,1}n → {0,1}, find an
x ∈ {0,1}n such that f (x) = 1. Such an x is also called
“satisfying assignment” and f itself is also called “predicate”.
Note that this search problem includes NP-complete problems
such as 3-SAT.

How the search problem is specified

Given: List X of N = 2n items and a predicate f on X which is
given by the operator

Vf : |x〉 7→ (−1)f (x) |x〉 .

Task: Find satisfying element x , i. e., f (x) = 1 (we assume
precisely one such element exists).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Grover’s Algorithm for Searching a List

Searching for a satisfying assignment

Given a Boolean function f : {0,1}n → {0,1}, find an
x ∈ {0,1}n such that f (x) = 1. Such an x is also called
“satisfying assignment” and f itself is also called “predicate”.
Note that this search problem includes NP-complete problems
such as 3-SAT.

How the search problem is specified

Given: List X of N = 2n items and a predicate f on X which is
given by the operator

Vf : |x〉 7→ (−1)f (x) |x〉 .

Task: Find satisfying element x , i. e., f (x) = 1 (we assume
precisely one such element exists).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing a Function into the Phase

Another way of computing f

Given a Boolean function f : {0,1}n → {0,1}, the following
operation computes f into the phases:

Vf |x〉 = (−1)f (x) |x〉

Question: What is the relation between Uf and Vf ?

Realizing Vf from Uf

Uf |x〉
1√
2
(|0〉 − |1〉) =

1√
2

Uf |x〉 |0〉 −
1√
2

Uf |x〉 |1〉

1√
2
|x〉 |f (x)〉 − 1√

2
|x〉 |1⊕ f (x)〉

1√
2
(−1)f (x) |x〉 1√

2
(|0〉 − |1〉)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Computing a Function into the Phase

Another way of computing f

Given a Boolean function f : {0,1}n → {0,1}, the following
operation computes f into the phases:

Vf |x〉 = (−1)f (x) |x〉

Question: What is the relation between Uf and Vf ?

Realizing Vf from Uf

Uf |x〉
1√
2
(|0〉 − |1〉) =

1√
2

Uf |x〉 |0〉 −
1√
2

Uf |x〉 |1〉

1√
2
|x〉 |f (x)〉 − 1√

2
|x〉 |1⊕ f (x)〉

1√
2
(−1)f (x) |x〉 1√

2
(|0〉 − |1〉)

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Grover’s Algorithm

The diffusion operator

Dn :=

−1 + 2

2n
2
2n . . . 2

2n

2
2n −1 + 2

2n . . . 2
2n

...
...

. . .
...

2
2n

2
2n . . . −1 + 2

2n

Inversion about the average

One application of the operator −DnVf when applied to the
equal superposition of basis states does the following:

-
6

-
6

-
6

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Grover’s Algorithm

The diffusion operator

Dn :=

−1 + 2

2n
2
2n . . . 2

2n

2
2n −1 + 2

2n . . . 2
2n

...
...

. . .
...

2
2n

2
2n . . . −1 + 2

2n

Inversion about the average

One application of the operator −DnVf when applied to the
equal superposition of basis states does the following:

-
6

-
6

-
6

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Grover’s Algorithm

Grover’s algorithm

First prepare the equal superposition. Then iterate the operator
−DnSf a number of O(

√
2n) times. Afterwards measure the

system in the computational basis. With high probability the
result will be the solution x for which f (x) = 1.

Success probability after several iterations

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Grover’s Algorithm

Grover’s algorithm

First prepare the equal superposition. Then iterate the operator
−DnSf a number of O(

√
2n) times. Afterwards measure the

system in the computational basis. With high probability the
result will be the solution x for which f (x) = 1.

Success probability after several iterations

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Different Types of Quantum Algorithms

Factoring

classical: O(e(c+o(1)) 3
√

log n(log log n)2
)

quantum: O(poly(log n))

-
6

⇓ discrete FFT

-
6

feature extraction using signal
transforms

leads to the idea of “hidden
subgroup problems”

highly regular, in general huge
speed-ups can be expected

Searching
classical: O(N)
quantum: O(

√
N) (and this is optimal)

-
6

-
6

⇓ correlation with -6

-
6

increase the amplitude of target
states via correlations

in general a square-root
speed-up can be expected

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Two Different Types of Quantum Algorithms

Factoring

classical: O(e(c+o(1)) 3
√

log n(log log n)2
)

quantum: O(poly(log n))

-
6

⇓ discrete FFT

-
6

feature extraction using signal
transforms

leads to the idea of “hidden
subgroup problems”

highly regular, in general huge
speed-ups can be expected

Searching
classical: O(N)
quantum: O(

√
N) (and this is optimal)

-
6

-
6

⇓ correlation with -6

-
6

increase the amplitude of target
states via correlations

in general a square-root
speed-up can be expected

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Quantum Gates and Circuits

Elementary quantum gates

U(i) =
..
.

..

.

U i
..
.

..

.

CNOT(i,j) =

..

.

..

.

..

.

•

g j

i

..

.

..

.

..

.

Universal set of gates

Theorem (Barenco et al., 1995):

U(2n) = 〈U(i),CNOT(i,j) : i , j = 1, . . . ,n, i 6= j〉

How to prove this result?

Next: breaking down the proof into several small steps

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for quantum circuits

Realizing a cyclic shift

How to realize Pn : x 7→ x + 1 mod 2n, which cyclically shifts
the basis states of an n qubit register?

Solution 1

rr
rr
f

rr
rf

rr
f

· · ·
· · ·

. . .

· · ·
· · ·
· · ·

rf f
Purely classical realization

Solution 2

..

.
DFT−1

2n

1
ω

..

.

1
ω2

1
ωn

DFT2n
..
.

Genuinely quantum realization

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for quantum circuits

Realizing a cyclic shift

How to realize Pn : x 7→ x + 1 mod 2n, which cyclically shifts
the basis states of an n qubit register?

Solution 1

rr
rr
f

rr
rf

rr
f

· · ·
· · ·

. . .

· · ·
· · ·
· · ·

rf f
Purely classical realization

Solution 2

..

.
DFT−1

2n

1
ω

..

.

1
ω2

1
ωn

DFT2n
..
.

Genuinely quantum realization

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Examples for quantum circuits

Realizing a cyclic shift

How to realize Pn : x 7→ x + 1 mod 2n, which cyclically shifts
the basis states of an n qubit register?

Solution 1

rr
rr
f

rr
rf

rr
f

· · ·
· · ·

. . .

· · ·
· · ·
· · ·

rf f
Purely classical realization

Solution 2

..

.
DFT−1

2n

1
ω

..

.

1
ω2

1
ωn

DFT2n
..
.

Genuinely quantum realization

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Universality of CNOT and Local Gates

Proof outline

Given a unitary matrix U ∈ U(2n).

Write U = U1 · . . . · ·UM , where Ui acts on pairs of states

Factorize each Ui using multiply-controlled Λn(V) gates,
where V ∈ U(2).

Write each V in the form (A†σxA)(B†σxB) with A,B ∈ U(2).

Use this to write each Λn(V) in terms of local gates and
Λn(σx) (i. e., generalized CNOTs).

Implement Λn(σx) recursively using Λk (σx), where k < n.

Literature

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo et al.
Elementary gates for quantum computation.
Physical Review A, 52(5):3457–3467, 1995.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Universality of CNOT and Local Gates

Proof outline

Given a unitary matrix U ∈ U(2n).

Write U = U1 · . . . · ·UM , where Ui acts on pairs of states

Factorize each Ui using multiply-controlled Λn(V) gates,
where V ∈ U(2).

Write each V in the form (A†σxA)(B†σxB) with A,B ∈ U(2).

Use this to write each Λn(V) in terms of local gates and
Λn(σx) (i. e., generalized CNOTs).

Implement Λn(σx) recursively using Λk (σx), where k < n.

Literature

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo et al.
Elementary gates for quantum computation.
Physical Review A, 52(5):3457–3467, 1995.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Operations on Subspaces

Rotation on a subspace spanned by the states s1 and s2

T (s1,s2) =

0
BBBBBBBBBBBBBB@

1
. . .

1 ∗
?

s1

∗ � s1

?

s2

1
. . .

1∗ ∗ � s2
1

. . .
1

1
CCCCCCCCCCCCCCA

Theorem

Every U ∈ U(2n) can be written in the form

U =
∏

s1,s2∈{0,1}n

T (s1, s2).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Operations on Subspaces

Rotation on a subspace spanned by the states s1 and s2

T (s1,s2) =

0
BBBBBBBBBBBBBB@

1
. . .

1 ∗
?

s1

∗ � s1

?

s2

1
. . .

1∗ ∗ � s2
1

. . .
1

1
CCCCCCCCCCCCCCA

Theorem

Every U ∈ U(2n) can be written in the form

U =
∏

s1,s2∈{0,1}n

T (s1, s2).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Conditional gates with multiple controls

Let U ∈ U(2). Then Λk (U) ∈ U(2k+1) is defined by

Λk :=

1

. . .
1

U

 = 12k+1−2 ⊕ U.

Alternative description of Λk (U)

Λk (U) |x1, . . . , xn〉 |y〉 =

{
|x1, . . . , xn〉 |y〉 if ∃i : xi 6= 1
|x1, . . . , xn〉U |y〉 if ∀i : xi = 1

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Conditional gates with multiple controls

Let U ∈ U(2). Then Λk (U) ∈ U(2k+1) is defined by

Λk :=

1

. . .
1

U

 = 12k+1−2 ⊕ U.

Alternative description of Λk (U)

Λk (U) |x1, . . . , xn〉 |y〉 =

{
|x1, . . . , xn〉 |y〉 if ∃i : xi 6= 1
|x1, . . . , xn〉U |y〉 if ∀i : xi = 1

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Realizing a singly controlled Λ1(U) gate

Λ1(U) =
A m

•

B m
•

C

E

Description of the local gates used in this circuit

U = exp(iφ)W ,

W ∈ SU(2),

E =
(

1 0
0 exp(iφ)

)
,

ABC = I, AσxBσxC = W .

The matrices A,B, and C are obtained from the
decomposition U = (A†σxA)(B†σxB).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Realizing a singly controlled Λ1(U) gate

Λ1(U) =
A m

•

B m
•

C

E

Description of the local gates used in this circuit

U = exp(iφ)W ,

W ∈ SU(2),

E =
(

1 0
0 exp(iφ)

)
,

ABC = I, AσxBσxC = W .

The matrices A,B, and C are obtained from the
decomposition U = (A†σxA)(B†σxB).

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Realizing a two-fold controlled gate Λ2(U)

U

•

• =

V

• i•
V †

• i•
V

•

Comments

Here we have to find a unitary V with V 2 = U.

This idea can be generalized to arbitrary Λk (U), however,
the complexity obtained from this factorization scales
exponentially with k .

Need better break-down strategy.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Realizing a two-fold controlled gate Λ2(U)

U

•

• =

V

• i•
V †

• i•
V

•

Comments

Here we have to find a unitary V with V 2 = U.

This idea can be generalized to arbitrary Λk (U), however,
the complexity obtained from this factorization scales
exponentially with k .

Need better break-down strategy.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Efficient Break-Down Strategies

Λn−2(σx)

e

•
•
•
•
•
•
•

=

e

•
•
•
•
•

e
•
•
• e

•
•
•
•
•

e
•
•
•

=⇒ linear in n

Λn−1(W) with W ∈ SU(2)

W

•
•
•
•
•
•
•
•

=

A
• e

•
•
•
•
•
•
•

B
• e

•
•
•
•
•
•
•

C
•

=⇒ linear in n

Important result about multiply-controlled gates

Let U ∈ U(2). Then any Λn−1(U) gate operating on n qubits
can be implemented using at most O(n) elementary gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Efficient Break-Down Strategies

Λn−2(σx)

e

•
•
•
•
•
•
•

=

e

•
•
•
•
•

e
•
•
• e

•
•
•
•
•

e
•
•
•

=⇒ linear in n

Λn−1(W) with W ∈ SU(2)

W

•
•
•
•
•
•
•
•

=

A
• e

•
•
•
•
•
•
•

B
• e

•
•
•
•
•
•
•

C
•

=⇒ linear in n

Important result about multiply-controlled gates

Let U ∈ U(2). Then any Λn−1(U) gate operating on n qubits
can be implemented using at most O(n) elementary gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Efficient Break-Down Strategies

Λn−2(σx)

e

•
•
•
•
•
•
•

=

e

•
•
•
•
•

e
•
•
• e

•
•
•
•
•

e
•
•
•

=⇒ linear in n

Λn−1(W) with W ∈ SU(2)

W

•
•
•
•
•
•
•
•

=

A
• e

•
•
•
•
•
•
•

B
• e

•
•
•
•
•
•
•

C
•

=⇒ linear in n

Important result about multiply-controlled gates

Let U ∈ U(2). Then any Λn−1(U) gate operating on n qubits
can be implemented using at most O(n) elementary gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Operations on a two-dimensional subspace

Consider a subspace with basis |i〉, |j〉:
Λn−1(U), if i and j differ in only one bit

Use Gray code sequence to connect i and j .

Example: n = 7, i = 5, j = 100

0000101
0000100
0100100

}
1100100

f
•

•◦
•◦
•◦
•◦

•◦

f
•

•◦

•◦
•◦

•◦
•◦

U
•

•

•◦
•◦

•◦
•◦

f
•

•◦

•◦
•◦

•◦
•◦

f
•

•◦
•◦
•◦
•◦

•◦

=⇒ Complexity is O(n3) elementary gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Elementary Quantum Gates

Operations on a two-dimensional subspace

Consider a subspace with basis |i〉, |j〉:
Λn−1(U), if i and j differ in only one bit

Use Gray code sequence to connect i and j .

Example: n = 7, i = 5, j = 100

0000101
0000100
0100100

}
1100100

f
•

•◦
•◦
•◦
•◦

•◦

f
•

•◦

•◦
•◦

•◦
•◦

U
•

•

•◦
•◦

•◦
•◦

f
•

•◦

•◦
•◦

•◦
•◦

f
•

•◦
•◦
•◦
•◦

•◦

=⇒ Complexity is O(n3) elementary gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Saving Even More Gates and the Final Result

The Cybenko trick (2001)

We can save almost all of the permutation gates necessary for
the Gray code by using CNOT gates at the different positions:

0000101
}

1000101
1100101
1100100

f

• f• W

•

•
•◦

•◦•◦
•◦ f•

f

•

=⇒ Complexity of O(n) gates for W ∈ SU(n)

Theorem

Any unitary transformation on n qubits can be implemented
using at most 4n elementary gates. This bound is tight and for
almost all elements of U(2n) we need Θ(4n) gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Saving Even More Gates and the Final Result

The Cybenko trick (2001)

We can save almost all of the permutation gates necessary for
the Gray code by using CNOT gates at the different positions:

0000101
}

1000101
1100101
1100100

f

• f• W

•

•
•◦

•◦•◦
•◦ f•

f

•

=⇒ Complexity of O(n) gates for W ∈ SU(n)

Theorem

Any unitary transformation on n qubits can be implemented
using at most 4n elementary gates. This bound is tight and for
almost all elements of U(2n) we need Θ(4n) gates.

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Conclusions

Shor’s algorithm for factoring integers

Reducing factoring to order finding

Setting up a periodic state

Efficient extraction of the period by computing a QFT

Grover’s algorithm: searching N items in time O(
√

N).

Elementary quantum gates:

Controlled NOT gate

Local unitary transformations

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

Dedicated to Thomas Beth, *16.11.1949, † 17.08.2005

Martin R ötteler, NEC Laboratories America Introduction to Quantum Algorithms

