
Armin Uhlmann: Geometry of State Spaces. (incomplete manuscript
version)

1 Geometry of pure states

1.1 Distance in H
Hilbert space H, vectors ψ ≡ |ψ〉, scalar product 〈., .〉.

vector norm =‖ ψ ‖:=
√
〈ψ, ψ〉

= Euclidian length of the vector 0 → ψ. In any basis

ψ =
∑

zjψj , zj = xj + iyj

we get
‖ ψ ‖= (

∑
x2

j + y2
j )

1/2 .

Therefore,
‖ ψ1 − ψ0 ‖= distance between ψ0 and ψ1

is the Euclidean distance in H.

1.2 Length of curves in H
Length of a connected curve

t → ψt, 0 ≤ t ≤ 1, (1)

(t is a parameter, not necessarily the time.)
To get the length we have to take all subdivisions

0 ≤ t0 < t1 < . . . < tn ≤ 1

in performing the supremum

length of the curve = sup
n∑

j=1

‖ ψj−1 − ψj ‖ (2)

The length is independent of the parameter choice.
Iff we can guaranty

ψ̇t =
d

dt
ψt ∈ H (3)

then

length of the curve =
∫ 1

0

√
〈ψ̇, ψ̇〉 dt (4)

and the velocity with which ψ travels through H reads

ds

dt
=

√
〈ψ̇, ψ̇〉 . (5)
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1.3 Distance and length

Generally, a distance “dist” in a space attaches a real and not negative
number to any pair of points satisfying
a) dist(ξ1, ξ2) = dist(ξ2, ξ1)
b) dist(ξ1, ξ2) + dist(ξ2, ξ3) ≥ dist(ξ1, ξ3),
c) dist(ξ1, ξ2) = 0 ⇒ ξ1 = ξ2.

A set with a distance is a metric space.

Given the distance, dist(., .), of a metric space and two different points,
say ξ0 and ξ1, one may ask for the length of a continuous curve connecting
these two points. The infimum of the lengths over all these curves is again a
distance, the inner distance. The inner distance, disti(ξ0, ξ1) is never smaller
than the original one,

disti(ξ0, ξ1) ≥ dist(ξ0, ξ1)

If equality holds, the distance (and the metric space) is called inner. The
Euclidian distance is inner. It is easy to present the shortest curves between
to vectors in Hilbert space:

t → ψt = (1− t)ψ0 + tψ1 (6)

is a short geodesic arc between both vectors. (In Euclidean spaces the
shortest connection between two points is a straight line.) The geodesic arc
is unique. Note also

ψ̇ = ψ1 − ψ0 .

1.4 Curves on the unit sphere

Restricting geometry of H to the unit sphere {ψ ∈ H, ‖ ψ ‖= 1} can be
compared with the change from Euclidean geometry to spherical geometry.

Assume ψ0 and ψ1 on the unit sphere. The shortest curve on the sphere
between them is a piece of a great circle.

This circle of radius 1 is unique if ψ0 +ψ1 6= 0. Its length is given by the
angle α between the two radii terminating at the two vectors, restricted by
0 ≤ α ≤ π. By elementary geometry

‖ ψ1 − ψ0 ‖=
√

2− 2 cos α = 2 sin
α

2
(7)

and the cosα can be computed by

cosα =
〈ψ0, ψ1〉+ 〈ψ1, ψ0〉

2
(8)

For a general curve t → ψt on the unit sphere one gets

〈ψt, ψ̇t〉 is purely imaginary. (9)
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To see this one differentiates

0 =
d

dt
〈ψ, ψ〉 = 〈ψ̇, ψ〉+ 〈ψ, ψ̇〉

and this is equivalent with the assertion.

1.5 Mandelstam-Tam-inequality

We see from (8) that
cosα ≤ |〈ψ0, ψ1〉| (10)

Therefore, we have the following statement:
The length of A curve on the unit sphere connecting ψ0 and ψ1 is not less
than

arccos |〈ψ0, ψ1〉| .
If a solution of a Schrödinger equation

Hψ = ih̄ψ̇, length = h̄−1
√
〈ψ,H2ψ〉(t1 − t0) . (11)

with Hamiltonian H connects two vectors, we get the Mandelstam-Tam
equality (1946) from this observation:

h̄−1
√
〈ψ,H2ψ〉(t1 − t0) ≥ arccos |〈ψ0, ψ1〉| (12)

By the arguments below one shows a little bit more:
√
〈ψ, H2ψ〉 − 〈ψ,Hψ〉(t1 − t0) ≥ h̄ arccos |〈ψ0, ψ1〉| (13)

Remark that the length and the expectation values of H, H2, are constants
of motion. We can, therefore, use ψ = ψt at any time to compute these
expectation values.

1.6 Phases

If the vectors ψ and ψ′ are linearly dependent, they describe the same state.
From this freedom in choosing a state vector the phase change

ψ → εψ, |ε| = 1, (14)

is of primary interest. (14) is the natural gauge transformation offered by
H. The curves

t → ψt and t → ψ′t := εtψt (15)

are gauge equivalent. The states themselves,

t → πt = |ψt〉〈ψt| (16)
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are gauge invariant. Thus, we have

ψt
bundle structure

−→ πt
lifts
−→

ψt

ψ′t
. . .

(17)

From the transformation (15) we deduce for the tangents

ψ̇′ = ε̇ψ + εψ̇, ε−1ε = iγ (18)

with real γ. By an appropriate choice of the gauge one gets

〈ψ′, ψ̇′〉 = 0 , the geometric phase transport condition (19)

(Fock, 1928, from adiabatic reasoning). Indeed, (19) is the equation

〈ψ′, ψ̇′〉 = iγ〈ψ,ψ〉+ 〈ψ, ψ̇〉 = 0

Thus
εt = exp−

∫ t

t0
〈ψ, ψ̇〉 dt. (20)

For a closed curve t → ψt with ψ1 = ψ0 the integral is the geometric or
Berry phase if it extends from t0 to t1.
Remark: This is true on the unit sphere. Generally one requires the vanishing
of the “gauge potential”

〈ψ′, ψ̇′〉 − 〈ψ̇′, ψ′〉
2i

or
〈ψ′, ψ̇′〉 − 〈ψ̇′, ψ′〉

2i〈ψ,ψ〉 (21)

Appropriate formulated, the phase transport and the Berry phase do not
depend on the normalization.

1.7 Fubini-Study-distance

Let us start with the Fubini-Study distance between two pure states

distFS(π1, π0) = min
ε
‖ ψ1 − εψ0 ‖ (22)

where
πj = |ψj〉〈ψj | . (23)

One may use (22) not only wit normalized vectors and positive rank one
operators. Having this in mind one easily finds

distFS(π1, π0) =
√
〈ψ0, ψ0〉+ 〈ψ1, ψ1〉 − 2|〈ψ1, ψ0〉| . (24)

For the modulus of the scalar product involves we choose the old nota-
tion overlap (remind “overlapping integral”), shortened to “olap” for conve-
nience:

olap(|ψ1〉〈ψ1|, |ψ0〉〈ψ0|) ≡ olap(ψ1, ψ0) = |〈ψ1, ψ0〉| ,
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while the transition probability reads

Pr{ψ0 → ψ1} ≡ Pr(π0, π1) =
〈ψ1, ψ0〉 〈ψ0, ψ1〉
〈ψ0, ψ0〉 〈ψ1, ψ1〉

(It seems, there is no general accepted notation.)
In particular, on the unit sphere, one gets

distFS(π1, π0) =
√

2− 2|〈ψ1, ψ0〉| =
√

2− 2
√

Pr(π0, π1) . (25)

By taking attention to (22), short geodesics between two π0 and π1 can be
described as follows. We choose in (23) the phases of the vectors ψj in such
a way that their scaler product becomes real and not negative. Then we
proceed as in the Euclidean case:

t → ψt := (1− t)ψ0 + tψ1, 〈ψ1, ψ0〉 ≥ 0. (26)

Then it is obvious that

distFS(πr, πs) =‖ ψr − ψt ‖ (27)

holds. That is, (27) describes a geodesic

t → πt = (1− t)2π0 + t2π1 + t(1− t) (|ψ0〉〈ψ1|+ |ψ1〉〈ψ0|) . (28)

There is no normalization here: trπt varies with t. The scalar product is
reell and not negative between two vectors of the curve (27). Therefore, the
gauge potential (21) is zero along the curve.

1.8 Comparison with other norms

In this subsection
πj = |ψj〉〈ψj |, 〈ψj , ψj〉 = 1 .

Then we get
distFS(π1, π2) =

√
2
√

1− |〈ψ1, ψ2〉| . (29)

For operators the von Neumann norm reads

‖ A ‖vN=
√

trA†A (30)

while the 1-norm (or functional norm) is defined by

‖ A ‖1= tr
√

A†A (31)

‖ B − A ‖ is a distance for every norm. In case of the distance of two pure
states we easily conclude

‖ π2 − π1 ‖vN= distFS(π1, π2)
√

1 + |ψ1〉〈ψ2| . (32)
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A further difference concerns the shortest curves: The geodesics with respect
of a norm are always

t → πt = (1− t)π0 + tπ1

because then
‖ πt − πr ‖= |t− r| ‖ π1 − π0 ‖

In particular, the geodesic between two pure states runs through the mixed
states. In contrast, the Fubini-Study geodesic between two pure states re-
main completely within the pure states.

Another observation: There is a Riemann metric belonging to the von
Neumann norm, It is an Euclidean metric as seen by writing (30) in terms
of the matrix entries with respect to any basis. The 1-norm, in contrast,
does not belong to a Riemann metric.

We shall now see, that the Fubini-Study distance does.

1.9 Fubini-Study metric

We normalize the curve

t → ψt := (1− t)ψ0 + tψ1, 〈ψ1, ψ0〉 ≥ 0.

to get
t → ϕt =‖ ψt ‖−1 ψt, (33)

t → ρt = |ϕt〉〈ϕt| .
The metric is obtained by calculating

1
2
tr (

d

dt
ρt)

2 =
〈ψ̇, ψ̇〉 〈ψ,ψ〉 − 〈ψ, ψ̇〉 〈ψ̇, ψ〉

〈ψ,ψ〉2 (34)

The Fubini-Study metric becomes simpler by going to normalized vectors
(33)

1
2
tr (ρ̇)2 = 〈ϕ̇, ϕ̇〉 − 〈ϕ, ϕ̇〉 〈ϕ̇, ϕ〉 (35)

and particular simple by requiring the transport condition for the geometric
(Berry) phase:

〈ϕ̇, ϕ〉 = 0 ⇒ 1
2
tr (ρ̇)2 = 〈ϕ̇, ϕ̇〉 . (36)

Because ρ2 = ρ it is ρ̇ = ρ̇ρ + ρρ̇. Hence

1
2
tr (ρ̇)2 = tr ρρ̇2 . (37)
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1.10 Once more: Tam-Mandelstam

Along the unit sphere ‖ ψ ‖= 1 we have

dsFS =
√
〈ψ̇, ψ̇〉 − 〈ψ, ψ̇〉 〈ψ̇, ψ〉dt (38)

Inserting a solution of a Schrödinger equation

Hψ = ih̄ψ̇

we get
dsFS = ∆H dt, ∆H =

√
〈ψ, H2ψ〉 − 〈ψ, Hψ〉2 (39)

One may consider h̄−1∆H the velocity with which the states run through
the space of pure states. Comparing again with the shortest possible line
within this space one gets

(t1 − t0)∆H ≥ h̄ arccos |〈ψ1, ψ0〉| (40)

2 Density operators, states, partial traces

2.1 Density operators

Let us fix some notions. Let H be an Hilbert space. With B(H) we denote
the set of all bounded operators.

If dimH < ∞, every linear operator A is bounded. To control it in
general one introduces the operator norm

‖ A ‖= sup
ψ
‖ Aψ ‖, ‖ ψ ‖= 1 (41)

and calls A bounded if this supremum over all unit vectors is finite. Thus
boundedness means that the operator cannot stretch unit vectors to arbi-
trary length. The operator norm of every unitary operator and of every
projection operator (different from the operator 0) is one.

The operator norm just introduced is also denoted by ‖ A ‖∞ and also
called the “infinity norm”.

Because of a special property the operator norm is also said to be a
C∗-norm. This refers to the relations

‖ A†A ‖=‖ A ‖2, ‖ A† ‖=‖ A ‖ (42)

In mathematics and in mathematical physics the operation A → A† is called
“the star operation”: In these branches of science the Hermitian adjoint of an
operator A is called A∗, following in that Hermite. The notion A† has been
used by Dirac in his famous book “The principles of Quantum Mechanics”.
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Let us come now to the density operators. Density operators describe
states. We shall indicate that by using small Greek letters for them. Density
operators are positive operators with norm one:

ω ≥ 0, trω = 1 . (43)

Heuristics: “ω is a non-commutative probability measure.”

2.2 Describing states by expectation values

Let ω be a density operator and A ∈ B(H) an operator. The value trAω
is called “expectation value of A in state ω”. In this sense one may say:
‘Observables distinguish states”.
((Observables should have spectral decompositions. An Observable is, there-
fore, represented by a normal Operator, i.e. A†A = AA† should be valid.
In textbooks often the stronger hermiticity is required for historical but not
physical reasons. On the other hand, the expectation values of projection
operators are sufficient to distinguish states.))

As observables (or operators) distinguish states, more observables allow
for a finer description, i.e. they allow to discriminate between more states.
To use less observables is like “coarse graining”: Some states cannot be
distinguished any more.

These dumb rules will be condensed in a precise scheme later on. The
first step in this direction is describing states in a different way, namely, as
indicated above, as the set of expectation values.

The function
A →= ω(A) := trAω (44)

enjoys the following properties:
1) Linearity: ω(c1A1 + c2A2) = c1ω(A1) + c2ω(A2)
2) Positivity: ω(A) ≥ 0 if A ≥ 0
3) It is normalized: ω(1) = 1.

At this point one inverts the reasoning. One considers 1) to 3) as condi-
tions and calls every functional on B(H) which fulfils these three conditions
a state of the algebra B(H). With other words, 1) to 3) is the definition of
the term “state of B(H) ”. The definition does not discriminate between
pure and mixed states from the beginnig!

If dimH < ∞, every functional obeying 1), 2), and 3) can be written

ω(A) = tr Aω, ω ≥ 0, trω = 1

as in (44). To see this one at first remarks, that every linear form can be
written ω(A) = trBA with an operator B ∈ B(H). However, if trBA is a
real and not negative number for every A ≥ 0, one infers B ≥ 0. (Take the
trace with a basis of eigenvectors of B to see it.) Finally, condition 3) forces
B to have trace one. Now one can rewrite ω := B. ¦

8



The case dimH = ∞ is more intriguing. A measure in “classical” mathe-
matical measure theory has to respect the condition of countable additivity.
The translation to the non-commutative case needs the so-called partitions
of the unity, i.e. decompositions

1 =
∑

j

Pj , PkPl = 0 if k 6= l (45)

with projection operators Pj . These decompositions are in one-to-one rela-
tion to decompositions of the Hilbert space into an orthogonal sum,

H =
⊕

j

Hj , Hj = PjH . (46)

A state ω is called normal if for all decompositions of 1

ω(1) =
∑

j

ω(Pj) (47)

is valid. ((For a state ω(1) = 1). But to define normality the condition “3)”
is not really important.))

Exactly if ω is normal its expectation values are given as in (44) by the
help of a density operator ω.

There is a further class of states, the singular states. A state ω of B(H)
is called “singular”, iff ω(P ) = 0 for all projection operators of finite rank.
Thus, if dimPH < ∞, one gets ω(P ) = 0 for singular states.

There is a theorem asserting that every state ω of B(H) has a unique
decomposition

ω = (1− p)ωnormal + pωsingular (48)

Remark: In mathematical measure theory this correspond to an “additive
measure”, in contrast to the genuine measures which are countably additive.

I cannot but at this point of my lecture to mention the theorem of
Gleason, published in J.Math. and Mechanics 6, 885-893 (1957) entitled
“Measures on the closed subspaces of a Hilbert-space. (Though I will not
make use of it later on.)

Assume f = f(P ) ≥ 0 is a function which is defined only on the projec-
tion operators P ∈ B(H) and which satisfies

f(1) =
∑

j

f(Pj) (49)

for all partitions (45) of the unity 1. Then Gleason proved that there is a
normal state ω coinciding on the projections with f , i.e. ω(P ) = f(P ) for
all P ∈ B(H).

The only restriction of his theorem concerns the Hilbert spaces of di-
mension two. If dimH = 2, the set of projection is too poor of relations and
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Gleason’s theorem does not apply to the states of B(H) in this particular
case. One calls the operator algebra acting on an one-qubit Hilbert space
a “spin factor”. ((“spin” for an obvious reason, “factor” because B(H) acts
irreducibly on H.))

It lasts about 30 years to find what is with general states. It is a lengthy
proof with a lot of not particular difficult steps but with a rich architecture.
The proof is in Rev. Math. Phys., 1, 235-290 (1990), written by Maeda and
is entitled “Probability measures on Projections in von Neumann algebras”.

In the case at hand it asserts the following: Assume dimH = ∞. Given
a function f ≥ 0 on the projection operators fulfilling (49) for all finite
decompositions of 1. Then there is a state ω satisfying ω(P ) = f(P ) for all
projection operators of B(H).

2.3 Subalgebras

There is a consistent solution to the question: What is a subsystem of a
quantum system with Hilbert space H and algebra B(H). As already said,
a subsystem should consist of less operators (observables) than the larger
system B(H).

Let A ⊂ B(H) a subset. We require
a) A is a linear space.
b) If A ∈ A then A† ∈ A .
c) 1 ∈ A . (1 is the identity map of H .)
d) If A,B ∈ A then AB ∈ A
e) Something more if dimH = ∞ .

If these requirements are fulfilled, we say that A represents (or “is”) a
subsystem of B(H). As a mathematical object a) to d) is called a unital
∗-subalgebra of B(H) .

The next two remarks concern point e) above.
Remark 1: A is a C∗-algebra, if it is closed with respect to the operator

norm: For every sequence Aj ∈ A which converges to A ∈ B(H) in norm,
‖ A−Aj ‖∞→ 0, the operator A must be in A also.

Remark 2: A is called a von Neumann algebra, if it is closed with
respect to the so-called weak topology: Let be F a set of operators from A
and A ∈ B(H). Then A should be in A if for every n and for every finite set
ψ1, . . . , ψn of vectors from H there is a B ∈ F fulfilling the inequality

n∑

j=1

|〈ψj , (A−B)ψj〉| ≤ 1/n

Then A is in the “weak closure” of F .

The commutant of a ∗-subalgebra A of B(H) is the set of all B ∈ B(H)
commuting with all A, i.e. AB = BA for every A ∈ A. The commutant
of A is denoted by A′. The commutant of a ∗-subalgebra is always a von
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Neumann algebra. Von Neumann has shown that A is a von Neumann
algebra if and only if A′′ = A. (A′′ is the commutant of the commutant A′.)

Assume the algebras A1 and A2 represent subsystems of B(H). Then
A2 is considered a subsystem of A1 if A2 ⊂ A1 .

If a von Neumann algebra A acts irreducibly on H, it is called a factor.
Equivalently, a factor has a center consisting of the multiples of 1 only.
Therefore, a factor may be characterized by

A ∩A′ = C1 .

What is a state of A ? We just mimic what has been said to be a state
of B(H). A state of A is a function

A → ω(A), A ∈ A (50)

such that we have
1) Linearity: ω(c1A1 + c2A2) = c1ω(A1) + c2ω(A2)
2) Positivity: ω(A) ≥ 0 if A ≥ 0
3) It is normalized: ω(1) = 1.

We do not require 1), 2), and 3) for all operators of B(H), but only for
those in A. This is the only difference. As a consequence two different states
of B(H) may “fall down” to one and the same state of the subalgebra A .

Slightly more general: Let be ω1 a state of A1 and ω2 a state of A2 and
A2 ⊂ A1. Then ω2 is the restriction of ω1 onto A2 if ω2(A2) = ω1(A2) for
all A2 ∈ A2.

Conversely, ω1 is an extension or lift of ω2. The task of extending ω2

to a state of a larger system is always possible, but not unique: Seen from
the subsystem A2, (almost) nothing can be said about expectation values
ω1(A1) if A1 is in A1 but not in A2.

Remark: Wedderburn obtained a classification of all subalgebras of B(H),
dimH < ∞. See the hand written part for an overview about all subalgebras
describing quantum subsystems.

2.4 Back to density operators

Here we assume dimH < ∞ throughout. If ω is a state of B(H) there is a
density operator ω such that

ω(A) = trωA for all A ∈ B(H) (51)

In a subsystem, given by an subalgebra A we can find an operator ωA such
that

ω(A) = trωAA for all A ∈ A (52)
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and this procedure becomes unique by requiring

ωA ∈ A . (53)

With some caution (see (59) below) ωA may be called a partial trace of ω.
The map

ω → ωA (54)

is a trace preserving and completely positive map, whatsoever the unital
∗-subalgebra is.

Remark: There are more than one trace in A if A is not a factor. Thus
some care is needed in defining partial traces in general. But even if there
is essential only one trace, there are different nomalizations possible. Above
we used the induced trace defined by H ((i.e. by the representation of our
algebras)). Another possibility is the so-called canonical trace which is rep-
resentation independent. The canonical trace gives the value 1 to each of its
minimal projection operators P . A minimal projection projects onto mini-
mal A-invariant subspaces of H. One knows: P ∈ A is minimal, if there is
a state π of A such that

PAP = π(A) P for all A ∈ A (55)

In the same spirit a state π of A is called pure exactly if there is a projection
operator in A with which (55) is satisfied.

Main examples of subsystems are direct product constructions. Starting
with

H = Ha ⊗Hb (56)

The algebra B(Ha) becomes a subalgebra of B(H) by embedding

A ∈ B(Ha) 7→ A⊗ 1 ∈ B(H) (57)

so that
A := B(Ha)⊗ 1 ⊂ B(Ha ⊗Hb)

shows how the embedding is working. (This subalgebra is again a factor,
hence a “subfactor”.)

Now let be ω a state of B(H),

ω(C) = trωC, C ∈ B(H) (58)

Then we get for all A ∈ A

ω(A⊗ 1) = tr ωaA, ωA = ωa ⊗ 1
d
1 (59)

with
ωa = trbω

by definition of trb. More explicitly

trb(
∑

Aj ⊗Bj) =
∑

(trBj) Aj . (60)
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3 Transition probabilities

The aim is to define transition probabilities by operating in larger quantum
systems. The same idea provides the extension of the Study-Fubini distance
(and metric) to the Bures one. There are some quite useful tricks in handling
two positive operators in general position behind.

One meets different notations in textbooks and papers. In brackets I
collect the words used for the same entity: (transition probability, fidelity)
and (overlap, fidelity, square root fidelity). Here I use always the first in the
row for definiteness. (Though “fidelity” is much more in use!)

3.1 Purification

I restrict myself to the mostly treated case (56)

H = Ha ⊗Hb, ωa a density operator of B(Ha) (61)

π = |ψ〉〈ψ| and, to shorten language, also π is called a purification of ωa if

π(A⊗ 1) = ωa(A) for all A ∈ B(Ha) (62)

Equivalently, again for A ∈ B(Ha) it is

trωaA = trπ(A⊗ 1) = 〈ψ, (A⊗ 1)ψ〉 (63)

3.2 Transition probability, overlap, and so on

Denote by ωa
1 and ωa

2 two density operators of B(Ha).
The task is, to prepare ωa

2 if the state of our system is ωa
1 . To do so one

think of purifications πj of our ωa
j in a larger system B(Ha⊗Hb). One then

tests whether π2 is true. If the answer of the test is “yes”, then π2 and,
hence, ωa

2 is prepared.
The probability of success is |〈ψ1, ψ2〉|2.
One now asks for optimality of the described procedure, i.e. one looks for

a projective measurement in the larger system which prepares a purification
of ωa

2 with maximal probability.
This maximal possible probability for preparing ωa

2 with given ωa
1 is

called the transition probability from ωa
1 to ωa

2 or, as this quantity is sym-
metric in its entries, the transition probability of the pair {ωa

1 , ωa
2}.

The definition can be rephrased, with shortened notation, to

Pr(ω1, ω2) := sup |〈ψ1, ψ2〉|2, ψ1, ψ2 all purifications of ω1, ω2 (64)

In the same manner we define the overlap by

olap(ω1, ω2) = sup |〈ψ1, ψ2〉| (65)
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where ψ1, ψ2 run through all simultaneous purifications of ω1, ω2. In (65)
we do assume positivity but not the trace one condition.

One defines the Bures distance by

distB(ω1, ω2) = sup distFS(π1, π2) = sup ‖ ψ2 − ψ1 ‖ (66)

and by (65) this comes down to

distB(ω1, ω2) =
√

trω1 + trω2 − 2olap(ω1, ω2) (67)

which can be rewritten for two density operators

distB(ω1, ω2) =
√

2− 2
√

Pr(ω1, ω2), trωj = 1

If only curves entirely within the density operators are allowed in opti-
mizing for the shortest path, we get a further variant of the Bures distance,
namely

DistB(ω1, ω2) = arccos
√

Pr(ω1, ω2) (68)

in complete analogy to the discussion of the Study-Fubini case.
What remains is the computation of the overlap (66) to have access to

the other quantities defined in the subsection at hand.

3.3 Optimization

It is not obvious from the beginning, but nevertheless true, that we can
restrict ourselves to the case

H = Ha ⊗Hb, dimHa = dimHb = d (69)

((This is because the largest dimension for a cyclic representation of B(Ha))
is of dimension d2. That is implicit in what follows.))

We shall use a maximally entangled vector, and we choose

ϕ =
d∑

j=1

|jj〉 ≡
∑

|j〉a ⊗ |j〉b (70)

Then for all A ∈ B(Ha)

〈ϕ, (A⊗ 1)ϕ〉 = trA (71)

is valid. From
ψ = (W ⊗ 1)ϕ, ωa = trb|ψ〉〈ψ| (72)

it follows
ωa = WW † (73)

14



and, vice vera, (73) implies (72).
(73) points to the gauge transformation W → WU , U unitary, respect-

ing ωa as a gauge invariant. I can, however, only mention the interesting
challenge to construct a complete gauge theory governing these gauge trans-
formations.

Let us return to our problem with two density operators ωa
1 and ωa

2 and
two purifying vectors ψ1 and ψ2. There are just two operators W1, W2 in
B(Ha) satisfying

ψj = (Wj ⊗ 1)ϕ, ωa
j = WjW

†
j (74)

and with them we have

〈ψ1, ψ2〉 = 〈(W1 ⊗ 1)ϕ, (W2 ⊗ 1)ϕ〉 = trW †
1W2 (75)

Gauging ψ2 → ψ′2 by W2 → W2U , we see

〈ψ1, ψ
′
2〉 == trW †

1W2U

Let us stress that we fix W1 and vary only W2 in this relation. We thus
arrive at

olap(ωa
1 , ωa

2) = sup
ψ′
|〈ψ1, ψ

′
2〉 = sup

U
trW †

1W2U

It is |trBU | ≥ trB in case B ≥ 0 and U is unitary. Thus

olap(ωa
1 , ωb

2) = trW †
1W2 if W †

1W2 ≥ 0 . (76)

This condition can always be fulfilled due to the polar decomposition theo-
rem.

(76) can be restated as follows: Whenever

ωa
1 = W1W

†
1 , ωa

2 = W1W
†
2 , W †

1W2 ≥ 0

we conclude
Pr(ωa

1 , ωa
2) = (tr W †

1 )W2)2 .

3.4 Why the Bures distance is a distance

Before proceeding along the main line the triangle inequality should be
proved. Inserting (76) into (67) yields

distB(ωa
1 , ωa

2) =
√

trW1W
†
1 + trW2W

†
2 − 2trW †

1W2

Now observe that the traces of WW † and W †W are equal. Further remind
that W †

1W2 is assumed positive and, therefore, hermitian:

W †
1W2 = W †

2W1 . (77)
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Altogether we proved

distB(ωa
1 , ωa

2) =
√

tr (W1 −W2)†(W1 −W2) if W †
1W2 ≥ 0 (78)

Consider now three density (or only positive) operators, ωa
1 , ωa

2 , and ωa
3 .

Starting with W1 we can choose W2 and W3 such that

ωa
j = WjW

†
j , W †

1W2 ≥ 0, W †
1W3 ≥ 0

is valid. We can translate (78) to get

distB(ωa
1 , ωa

k) =‖ Wk −W1 ‖vN , k = 2, 3

We apply the triangle inequality for the von Neumann norm to (78).

distB(ωa
1 , ωa

2)+distB(ωa
1 , ωa

3) =‖ W2−W1 ‖vN + ‖ W3−W1 ‖vN≥‖ W2−W3 ‖vN

and the last term cannot be smaller than the Bures distance. Hence

distB(ωa
1 , ωa

2) + distB(ωa
1 , ωa

3) ≥ distB(ωa
2 , ωa

3) (79)

An application is the extended Tam-Mandelstam inequality. Let be

t → ωt, t′ ≤ t ≤ t′′ (80)

a solution of
ih̄ω̇ = [H,ω], H = Ht (81)

Then one can prove

∫ t′′

t′

√
tr(ωH2)− (trωH)2 ≥ h̄ arccos overlap(ω1, ω0) (82)

(see Phys. Lett. A161 (1992) 329-331. One has to look for a lift t → Wt

satisfying a Schrödinger equation with an Hamiltonian W → HW + WH̃,
where t → H̃t has to be chosen suitably.)

Bures did not ask wether his distance is based on a Riemann metric.
He was interested in cases with infinite tensor products of von Neumann
algebras and the theory of infinite dimensional manifolds had not been de-
veloped. But for finite dimension one can ask for.

There is, indeed, a Riemann metric reproducing the Bures distance. Its
line element is given by

(
ds

dt
)B = trG2ω =

1
2
tr ω̇G , (83)
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valid for invertible ω, with G the unique solution of

ω̇ = ωG + Gω . (84)

Using this one can get a differential form of (82) :

tr(ωH2)− (trωH)2 ≥ h̄

2
trGω̇ (85)

One may compare this inequality with the “quantum Rao-Cramers in-
equality”, which, however, plays its role in a quite different context (hy-
pothesis testing and other questions of mathematical statistics). A recent
overview, discussing these relationships, is in I. Bengtsson’s paper quant-
ph/0509o17. Further interesting things you have heard in the talk of A. Er-
icsson, a written version is quant-ph/0508133 .

3.5 An expression for Pr(ω1, ω2)

We make use of the positivity of W †
1W2 which is sufficient for the validity

of (76), and which yields also (??). It holds

(W †
1W2)2 = W †

1W2W
†
2W1 = W †

1ωa
2W1

There is a polar decomposition

W1W
†
1 = ωa

1 , W1 = (ωa
1)1/2U1

with a unitary U1. Putting things together yields

(W †
1W2)2 = U−1

1

√
ωa

1ωa
2

√
ωa

1U1 (86)

we can take the positive root and obtain

W †
1W2 = U−1

1 (
√

ωa
1ωa

2

√
ωa

1)1/2U1 . (87)

The trace of (87) yields the overlap, its square the transition probability

Pr(ω1, ω2) = (tr (
√

ωa
1ωa

2

√
ωa

1)1/2)2 (88)

3.6 An estimate

I use the notation

char(A) = all roots of the characteristic equation of A (89)

Clearly, this are the eigenvalues, counted with the appropriate multiplicity,
if A is diagonalisable. If A is hermitian or normal, (89) is often called the
“spectrum” of A.
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Because of
ω

1/2
1 (ω1/2

1 ω2ω
1/2
1 )ω−1/2

1 = ω1ω2

one concludes
char(ω1/2

1 ω2ω
1/2
1 ) = char(ω1ω2) (90)

Denoting the characteristic values of (90) by λ1, λ2, . . .,

Pr(ω1, ω2) = (
∑ √

λj)2 (91)

The sum of the λj is the trace of ω1ω2. Hence

Pr(ω1, ω2) = trω1ω2 +
∑

j 6=k

√
λjλk

We use the inequality
∑

j 6=k

√
λjλk ≥

√∑

j 6=k

λjλk

which is an equality for dimH = 2. For higher dimensions the estimate
becomes weak. Better estimates or a recursive procedure should be possible.
Anyway, replacing the left hand side of the estimate, which is the second
symmetric function of the λj , by traces,

Pr(ω1, ω2) ≥ tr ω1ω2 +
√

2
√

(trω1ω2)2 − tr(ω1ω2)2 (92)

is valid.

3.7 One qubit, dimH = 2

In the one qubit case (92) becomes an inequality. The trace expression in
the root can be much simplified also, being essentially the determinant of
ω1ω2. Thus

Pr(ω1, ω2) ≥ trω1ω2 + 2
√

detω1 detω2 (93)

Let us represent our density matrices by

ω1 =
1
2
(1 +

∑
xnσn), ω2 =

1
2
(1 +

∑
ynσn) (94)

and let us define a new coordinate by

x4 := 2
√

ω1, y4 := 2
√

ω2 (95)

We have nor placed the density operators on the upper 3-hemisphere,

x2
1 + . . . + x2

4 = y2
1 + . . . + y2

4 = 1 (96)

with x4 ≥ 0, y4 ≥ 0 The transition probability becomes

Pr(ω1, ω2) =
1
2
(1 +

4∑

j=1

xjyj) (97)
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3.8 A “hidden” symmetry

Remember first the equality (90)

char(ω1/2
1 ω2ω

1/2
1 ) = char(ω1ω2)

of the characteristic numbers. Let Z be invertible and consider the change

ω′1 = Z−1ω1(Z−1)†, ω′2 = Z†ω2Z (98)

One immediately see
ω′1ω

′
2 = Z−1(ω1ω2)Z (99)

and
char(ω′1ω

′
2) = char(ω1ω2) . (100)

Now (90) implies:
The eigenvalues of

√
ω1ω2

√
ω1 do not change if ω1, ω2 are transformed ac-

cording to (98). In particular

olap(ω1, ω2) = olap(Z−1ω1(Z−1)†, Z†ω2Z) (101)

Indeed, the argument is valid for every symmetric function of the character-
istic numbers in question.

We even can relax from the invertibility of Z by substituting

ω1 → Zω1Z
†

in (101):
olap(Zω1Z

†, ω2) = olap(ω1, Z
†ω2Z) (102)

Relaying on continuity we can state (102) for all operators Z.

3.9 Super-additivity of the overlap

At first let ω1, ω2 invertible. Then W1 and W2 (used to purify) are invertible
also. Now

W †
1W2 ≥ 0 ⇔ W2 = KW1, K > 0 (103)

To see the positivity of K, multiply from the left with W †
1 . We now observe

trω1K = trKW1W
†
1 = trW †

1W2, trω2K
−1 = trW †

1W2 (104)

But trW †
1W2 is the overlap and with this particular K we have

olap(ω1, ω2) =
1
2
(trω1K + trω2K

−1) (105)

However, for every positive C ∈ B(Ha ⊗Hb)

2 |〈ψ1, ψ2〉| ≤ 〈ψ1, Cψ1〉+ 〈ψ2, C
−1ψ2〉
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by the Schwartz inequality. If we restrict ourself to C = A ⊗ 1 it becomes
clear, that the right hand side of (105) cannot become smaller in substituting
another invertible positive operator for K. This proves

tr
√√

ω1ω2
√

ω1 =
1
2

inf
A>0

(trω1A + trω2A
−1) (106)

Remind that the left hand side is nothing but olap(ω1, ω2).

For all decompositions

ω =
∑

ωj , ρ =
∑

ρj (107)

the inequality
olap(ω, ρ) ≥

∑

j

olap(ωj , ρj) (108)

is valid. The inequality shows what is called “super-additivity” for the
overlap.

The proof uses (106). We use A = K from (104) to get the left hand
side of (108). But with this choice every term on the right of (108) cannot
be smaller than the corresponding overlaps because of (106). Thus we are
done.

3.10 Monotonicity

Choi proved for positive unital super-operators

Ψ(A−1) ≥ Ψ(A)−1 if A ≥ 0 (109)

A straightforward proof is possible if Ψ is 2-positive. One considers
(

A 1
1 A−1

)
⇒

(
Ψ(A) Ψ(1)
Ψ(1) Ψ(A−1)

)
(110)

and concludes, by 2-positivity, the positivity of the right hand side if the
matrix at the left is positive. But this takes place for A > 0.
The matrix at the right hand side is positive if

Ψ(A−1) ≥ Ψ(1)Ψ(A)−1Ψ(1) (111)

Now (109) follows with Ψ(1) = 1, i.e. by the assumed unitality of Ψ.

Let us apply (109) to the overlap. To this end we denote by Φ the
super-operator dual to Ψ,

trXΨ(Y ) = tr Φ(X)Y (112)

Ψ is positive if and only if Φ is positive. Ψ is unital iff Φ is trace preserving.
(106) provides us with

olap(ω1, ω2) ≤ 1
2

inf
A>0

(trω1Ψ(A) + trω2Ψ(A)−1)
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Indeed, the set of all Ψ(A) with A > 0 is contained in the set of all A > 0
because of positivity of Ψ. Now Choi’s inequality (109) provides us with

olap(ω1, ω2) ≤ 1
2

inf
A>0

(trω1Ψ(A) + trω2Ψ(A−1))

At this point we switch to the dual map Φ to obtain

olap(ω1, ω2) ≤ 1
2

inf
A>0

(trΦ(ω1)A + trΦ(ω2)A−1)

To finish the proof we use (106) again to get the monotonicity property

olap(ω1, ω2) ≤ olap(Φ(ω1), Φ(ω2)) (113)

for all trace-preserving positive super-operators Φ.
((We proved it for 2-positive Ψ. Following Choi, refined arguments show
that positivity is enough.))

3.11 Two additional remarks

I like to add two remarks, pointing in different directions. The first concerns
direct products and is as well important as simple. The second concerns the
geometric mean, referred to in an appendix, which allows a nice reformula-
tion of what has already been said. Its importance, however, is in allowing
to do almost all, what I have described in the finite case, for von Neumann
(and even for unital C∗-) algebras.

Direct products. With two pairs, ω1, ω1 and ρ1, ρ2 in two different Hilbert
spaces, one can perform their direct products ωj ⊗ ρj . The structure of the
expression (88) allows to conclude

Pr(ω1 ⊗ ρ1, ω2 ⊗ ρ2) = Pr(ω1, ω2) Pr(ρ1, ρ2) (114)

Using the geometric mean. The geometric mean is defined and discussed
in the appendix to which I refer to. The operator K, defined in (103) by

W2 = KW1 if W †
1W2 > 0

(and which was called M in the talk of A. Ericsson,) kann be written

K = ω1#ω−1
2 = ω−1

2 #ω1 (115)

Remembering the notations

ω(A) = trωA
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we may rewrite (104) as

Pr(ω1, ω2) = ω2(ω
−1
2 #ω1) = ω1(ω

−1
1 #ω2) (116)

and (106) reads

olap(ω1, ω2) =
1
2

inf
A>0

(ω1(A) + ω2(A
−1) ) (117)

To go further in the direction that defines states as positive and normalized
linear form of an algebra as indicated in subsections 2.3 and 2.4, we consider
special linear functionals,

ν(A) = tr νA , (118)

which may be eventually called “transition forms”. To do so, we require

|ν(A†B)|2 ≤ ω1(A
†A) ω2(B

†B) (119)

for all A, B in, say, B(Ha) ((or in any other suitable algebra)). Let ψ′1, ψ′2
be a purifying pair of the states and ψj = (W ′

j ⊗ 1)ϕ. Then

ν ′(A) = 〈ψ1, (A⊗ 1)ψ2〉 = tr (W ′
1)
†W ′

2 (120)

satisfies (119) (use Cauchy’s inequality).
One can show that (119) is sufficient for representing ν in the manner

(120) by a pair of purifications.
Therefore,setting A = 1, we can assert

Pr(ω1, ω2) = sup
ν
|ν(1)|2 (121)

such that ν runs over all linear forms fulfilling (119). Indeed, to take this as
a definition has been my starting point for all that.

4 Appendices

4.1 The geometrical mean

Let A, B, and C positive operators in a finite dimensional Hilbert space. A
remarkable observation due to Pusz and Woronowicz can be rephrased in
the following form:

Fixing A and B, there is a largest operator in the set of all C satisfying
(

A C
C B

)
≥ 0 . (122)

This unique element is called the geometrical mean of A and B and it will
be denoted, following Ando, by

A#B . (123)
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In other words: (122) is valid if and only if

C ≤ A#B . (124)

From the definition we get the relation

A#B = B#A, A−1#B−1 = (A#B)−1 , (125)

the latter being true if the operators are invertible. If just A is invertible
then the block matrix (122) is positive if and only if

B ≥ CA−1C (126)

and one can conclude that A#B is the unique positive solution X of the
equation

B = XA−1X, X ≥ 0 . (127)

The equation can be solved and one gets

A#B = A1/2(A−1/2BA−1/2)1/2A1/2 (128)

If A and B commute one can see from (122)

AB = BA ⇒ A#B = (AB)1/2 (129)

To see it one uses a common eigenbasis to reduce (122) to the positivity of
(

a c
c b

)
≥ 0 ⇔ ab ≥ c2

for three positive numbers a, b, and c.
To get a further description of A#B we shall use the fact that it is an

operator mean, i.e. for invertible Z it enjoys

Z(A#B)Z∗ = (ZAZ∗)#(ZBZ∗) . (130)

For the proof one relays on
(

A C
C B

)
≥ 0 ⇔

(
ZAZ∗ ZCZ∗

ZCZ∗ ZBZ∗

)
≥ 0

for invertible Z.
Now we can combine (129) and (130) with Z = A + B. To check the

positivity of (122) it is sufficient to so so an the support space of A + B.
Thus we may assume that this operator is invertible. Then

A′ = (A + B)−1/2A(A + B)−1/2 and B′ = (A + B)−1/2B(A + B)−1/2

commute. Indeed, it follows

A′ + B′ = 1, A′#B′ = (A′B′)1/2
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and we can apply (130). Thus

A#B = (A + B)1/2((A + B)−1/2A(A + B)−1B(A + B)−1/2)1/2(A + B)1/2

(131)
Next we prove super-additivity. Let

A =
∑

Aj , B =
∑

Bj , and

Cj = Aj#Bj , C =
∑

Cj

Then (
A C
C B

)
=

∑ (
Aj Cj

Cj Bj

)

is a positive block matrix. Thus C is smaller than A#B and that proves

A#B ≥
∑

Aj#Bj . (132)

Our next task is monotonicity.
Let Φ be a 2-positive super-operator. Then with

(
A A#B

A#B B

)
also

(
Φ(A) Φ(A#B)

Φ(A#B) Φ(B)

)

must be a positive block operator with positive entries. Hence,

Φ(A#B) ≤ Φ(A)#Φ(B) (133)

is valid by the very definition of the geometric mean.
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