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1. Classical physics
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2. Classical-quantum
correspondence

A single degree of freedom:
Classical states described by points in phase space,

X=(p, 0)
Motion generated by Hamiltoniah](X),
and Hamilton’s equations:

o _BH
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Corresponding quantum operatc§ and f,
which do not commute |7, ] = #&,

Motion of states, %'}
determined by Schroedinger’s equation:

ino ) = H (D))

Entanglement only for more degrees of freedom.

Basis of product states:
b =[5} ® |5 ® [P



The corresponding product phase space Is

T =T .. T T

now SH /& 18 a (20)-dimensional vector

and J 1S a block matrix.

We will need the skew product:

2
rAz =D (pw —ep) =Jx 2
fr=1
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Approximate correspondance of quantum states
with probability distributions f(z) .

If the degrees of freedom are decoupled,
The distribution is just a product:

f':ﬂ?] — fl(ml]- f.!(m.ﬂ'fﬂ:m L:'-

In general the single distributions are reobtained
by tracing over the other variables:

film) = ff(m]l dre dzg.



The product nature of the classical distribution
IS preserved by an additive Hamiltonian:

H(z) = H(z)+ . Hlz)+ Hilzg)

Hamiltons equations decouple,

so thatif £ # I, then x;(# z,0) doss not depend on .

Furthermore,
0.

I [:ti ﬂF.s) — f-:(ti m-t(_ti fﬂ-::':'



Examples:
-A pair of particles, each moving in one dimension.

-A single particle moving in two dimensions.
All that is demanded is th. [Fx. &) = 2k,
Or that the classical Poisson brac{zx, ¢} =

What about other variables
obtained through canonical transformations?

Consider a model for the piano stringlamasses
connected by strings. The transformation to the
normal modes of vibration describes

collective motions of the masses.



This linear canonical transformation
(i.e. symplectic transformation)
substitutes the original I conjugata planes, &, = (&, o),

by new conjugata planes, x; = (o}, 9f)
Thig iz alao a2 proper phase space to be quantized, ] — ]

However, general nonlinear canonical transformations
are not matched exactly by quantum unitary

transformations:
At best a semiclassical approximation



-Another example is a particle with internal structure,
e.g. angular momentum.

The Stern-Gerlach experiment is on such a system.
Here the spin angular momentum is intrinsically
guantum.

A similar coupling between

the orbital angular momentum of a Rydberg atom
(large dipole moment)

and its translation degrees of freedom

would result from a homogeneous electric field.



Basic differences between classical and quantum systems:

1) The nature of the initial state;
1) The nature of the evolution;

i) The effect of experiments.

Objective:

To cast the guantum mechanical description of 1) and 1i)
In the most classical form possible,

so as to highlight the truly inovitative

elements of the quantum theory.




3. Semiclassical guantum states

Consider a momentum egenstate g% for L = 1.

In the momentum reprazentation
e’} = dlp" —p).

No good for semiclassical extrapolation.
Use alternative representation:

ie|e’y = exp (w?p’) = axp Cgp;ﬁ[ﬂ) -




Arbitrary phase is determined by choice of
initial point in the action integral:

Slg) = f:;ﬂ(q} dq.

Consider now a general observable, K, §).

Eigenstates correspond to
curves in phase space, v . Hip,q¢) = k.
Given the (multivalued) function g (¢ }

The semiclassical approximation is

glheh = Z%{q}exp@ S“ 3]-




In the case of bound states,
eigenvalues determined by the
Bohr-Sommerfeld condition:

1
épdq = (n+ -k
,i, .

The different branches of the function
pP(q) are joined ataustics where the
classical curve iIs vertical:



The vertical tangent
would correspond to the state, (plg.)

The corresponding semiclassical approximation
superposes terms like

iplkh = B(p) exp ¢ [Sf} | y}



Near the caustic, the semiclassical approximation
IS defined by the Fourier transform:

alk) = s [ @ (ks ()

(Airy functions instead of complex exponentials)



Let us now consider a product state for £ = 1. Then,

1= (1) (5] o 27

and we can gensralize the definition of action,

Slg) = f:F(tﬂ -dq.

o

Independent of the path, $0q) is
a Lagrangian surface :

Sig)=51m)+... A SLI:Q'L}:%F'CIQ' =0

for any (reducible) circuit,




arbitrary elrenstates of £ observables

_—— e e, e

H =H Ky K

each 1in ibs own Hilbert apace

!

g\ k) = Lok gzlke

Considering just cne branch of each funtion, plg:),
then the wawe tunction will be a

superposbtion of terms with the torm

(Sl + .+ Selen)]

lqlkh = H Alg) e -

Km ¢ =k, iz also Lagrangian.



It the surface 18 the product of £ cuantized circles
it will be an f-torus, 7.

Hach of the L wrreducible circuits, .

must then satiafy the Pohr-Sommerfeld conditions,

1

}g o dgr = [y + E}ﬁ'r
g



SEMICLASSICAL EVOLUTION

Van Vleck: classical and qguantum evolutions commute.

Hach evolwed observable then corresponds to

il t) = Kilzdpa, f),0)

With the quantization condition

H,;Ii:l:,;:, ﬁ::l — .;i:,[

The evolved classical surface is still Lagrangian because

jﬁF‘n'dQD=jﬁfP¢'d@h
o “»



Example: 2-D separable torL v = = & v,
Combining the projections onto each position axis,

the projection onto the position plane is a rectangle,
bordered caustic lines.

Py * P
ForlL>2, /4\
the projection is a hypercube. >

\ ol |




COHERENT STATE BASIS
labelad by the phase space wector, 17 = (5,74,

) = () " exp (= g — g + 5 (g — )

Overcomplete and not orthogonal, but

9 = = [ aniryinl

Generalphase space translations:
i ) ) P,
S d —mg p)| = exp (ﬂﬂm)
of the HO ground state:

2|0y = (T%)quxp[— iﬁj.

£, = exp



In quantum optics, switch to

creation and anihilation operatp (#4453 / +/ 2.
Then, have complex vectol( & £ #6;)/ 2R

By working directly with the representation
of operators, orthogonality is regained.

We will again use the translation operator,
but it will not be biased by acting on any
particular state.



4.0perator representations and double
phase space

-

The near operators, A,

form a vector space |Al.
‘efining the Hilbert-Schimidt produet,

(A|BY = tr A8,

dyadic operators | = |¢_ e, | form a complete basis,

(QAY = (g|Alg} = tr |- (e, | A



Note similarity between dyadic basis, ‘Q'_ :5 {q_|_ ‘,
and product state basis,‘qlb G ‘Q'g'r'-.

Then, natural to relate double Hilbert space

to double phase space: Ji=I_ & T

The operato ‘Q'r"'r" corresponds to the

Lagrangian plang) = contant,

In double phase space. But adapt coordinates

@ =l ¢ ), bt P={—rp_ ,p ) X = (Fg)



Canonical transformation€; : X_. - X, =(0q,, p,)

L

’ § g, —§ p (do =0

.o X

Q=(q.,q,)
Define: P=(-p_, p.)=> ﬁ_ P Q
F=0.v)

0




Motice the nchneass of atrctures.

The canonical transformations define 2, (x_)
a one-to-one function.

The product of a Lagraneian surface, A_ 1in x_
with another surface AL in x4, A = A @ AL,

182 alzo Lagransian in double phase apace,

but projects singularly onto either of the factor spaces.

If both surfaces are tort = 7_ &1,
If L=1, a 2-D product torus,
but with ©— — —D_



If each Lagrangian surface in single phase spacesmonds to a state,

Le [|g_) and |y},
then we represent [T =[xy d(xp_| in the | representation

W = teg | ol oy,

the semiclassical approximation 18 just a superposition

WG [T = As () explecs Q)7 A
with

A(Q) = A _(g)% Ay (gy)

and

Q) = § B(@) 4q'

Just like product states: projects as a rectang@r) or Q.



i)

The semiclassical approsamation tor the unitary operators, F,

that comrespond toa canonical transtormation, C @ x_ — 3,

has exactly the same form,

QY = (g |Tg} = Us(Q) exppSH(Q)/ A,

for each branch of the function £, ()

I. Note that the Lagrangian surface is not a praduct

li. Note that projections onte andQ may be singular.



SQ) is the generating function of a canonical transtram:

&5 ] &5
E=PG(QL UL £=F+r E,q—_=—iﬂ'—-

For symplectic transformations (linear canonical),
Q) is quadratic and the semiclassical propagator istexa

Legendre transforms create new generating functions:
wi% rotation, ¢ — P, Dy — —¢4,

Then ' = (g_,p4) i8 alzo a good Lagrangian plane
the new coordinate plane for the dezenption of Aq.

o8 S &S
5&:;]." = P‘ﬂr][c;;ln,llr U EED_I_ = —94. 5,q_ = .




Nontrivial change of coordinates in double phase space:

X, + X - -
— — M — O _1
=(pa=—= .

y=J¢&=J(X, — X)) 1 0

New Lagrangian coordinate planes
correspond to unitary operators:

y=¢=0 = | (identity operator) X, =X

F£0 = Tg (phase space translationk, = X_+¢

Phase space translations form a group.



Exact correspondence to quantum operators:

cach plane ¥ = econstani comregponds precizely to the
translation operator. 7). previoualy defined.

wa could also uae ’_ﬁ- = expliy T/ A

previoug dyadic |4 basis,

E'—i-fP' ':lu"l'ﬁ

j?=/HQQ+%><q—%-

The transformation frorhorizontal to thevertical basis
IS given by the full Fourier transform ( as withtss):

Lo — — The Reflection Operator
2 A, Jf ] ’_ﬂ;e:{p[ﬁ:!-:ﬁhé}, P

previoug dyadic |4 basis,

T iafh

{q tq
q+z><q_z

2 h, = [ dg,



=

Switch to the unitary operator bas [¥} = ¥:

whers we e ’f‘_E = Tt

This is the expansion coefficient in

dg

A= Al Alg) 1y,
because
P dé’ S
tr(T_ &) = tr f [zfﬁ}L AT ¢ Ty
. d'f'r ! 1_ ¥ 0 —
| =/ G A o L AT = AL
using

tedy = (2em)%8(8) = {y| 7}



We have also used the quantum version of the goonperty:
T-;E'ﬂ T-Iﬁ'l — T-I‘.'1+-‘.'ﬁ E:{p[ﬁfl 4 ‘fﬂ]
The other products of the (quantum) affine growg ar

e 3, .
HxT.i; ZEIP[—E}”HEE] Hm—sgza

i

-~ 2 ~
Iy, = EI"EIJ[—E?*E ME] Aoy
and

o e 28 -
Fio, by = axp[—2a1 A ] Tagag sy

Mote that ﬁi = f the 1dentity,

hence the (degenerate) eigenvalues of A,
mugh be sther +1, or —1.

Theretcre these operators are Hermitian, as we=ll as unitarmys



the wertical’ plang, x = 0 defines the canonical reflection
t_ — T, = —x_ (or inversion).
Cther wertical planes specity reflections through obther points,

T — Ty = —[v_ —2x) @

Together with the translations,
reflections form

the AFFINE GROUP

of geometry.




Are the reflection operators true observables?

The parity,+1, or-1, around the origin
IS an observable wave property.
This Is currently measured in quantum optics.

There, the natural basis are the even and odd state
of the Harmonic Oscillator.

For reflections around other centres, X,
translate the whole HO basis, just as the
translation of the ground state generates
coherent states.



Now represent arbitrary operators in terms of
reflection centres. The assumption that

A =Jf.:1:a-;.q[x} Lr:
leads to

dx’

(x| AN = tr (2ER A = tr o

A (2'R)(2'RY) = Alx).

THE WEYL REPRESENTATION

Again, we use half the coordinates of double plsasee,
Inside a Lagrangian plane thataghase space on its own.

(Balazs and Jennings + geometry)



Semiclassical form of representations of unitaryrafoes
In terms of centres or chords is the same as faroth

Lagrangian planes.
The Weyl representation is a superposition of

U (x) = As () explaSs(x)/ A,

with the centre action 18 defined as
5(x) =f (x") - .:1:-:’=f £(x) A dx,
0 0

For a symplectic transformation there is only oremich
of y(x) and the semiclassical form is exact.

In general there may be caustics,

where the Lagrangian surface projects singularly
onto the y=0 plane. (the identity plane)

Turning on a Hamiltonian for a small time:

Six,t=¢) = —H(x) + (%), No caustics!



The Weyl representation of the Hamiltonian, or ampasth
observable, coincides with the corresponding atas$unction
within first order in Planck’s constant.

(Not so with the reflection operator)
Their chord representation is not smooth:

Ale) = [E;ﬁ}’: fl:l:!-: axp (—%qf h:!-:).ﬁl[::h:}

This Founer transtorm takes
the aymbol for the identity, f(x) = 1, into F(£) = &(¢)

and a Taylor serles in X Into a
aaries of denvatie=s of d-functions.



Some general formulae:

Fior the trace of an operator, we hawve the alternative forms:

-

trA =trIA = [ Tio| AN = Alf =07 = fd:!-:ﬁs.[:h:}.

The adjoint operator, ﬂ’f? 1% represented by

Al(x) = [A[x)]", or Alig) = [A{-£)]"
Thus, if 4 iz Hermitian, A(x) ia real,
though A(¢) may well be complex

The Weyl or chord representation for the producatpdrators
IS not obvious, but

whal = [ o MOA (-0 = [ oMM




6. The partial trace

Recall that the representation of operators, A = | A}, in a given baziz, such as ([(}]|AN,
corregponde to the folliation of the double phase space, X = (FQ), by a sat of
Lagrangian planes, ) = constani Admitting linear canonical tranaformations in doubls

nhase space, we are free to choose () = (¢_,¢,), 0t ) = x, or ) = ¥ = J¢ among others
In all cames
fQQh =6Q" - Q)
which permita ug to identify the expansion cosflicient in
A=|ap = [dq AlQ) I}
with ({40,



the vhase space 18 a product of a pair of phase spaces,
X =X, ® X;, each wath 20, dimensions,

Then decomposze the Lasransian planes
chosen ag a basa for double phasge space ag O = O & s,

corresponding to, operators Q0 = |0 @ Qe
Thus the complete |} representation beeomes

A=) = [ dudQ A(Q1, @) 1@} 8 |Qah
The definition of the partial trace 12 then

(1] A)y=trs & =teds & = [ dQudCu A(Q1, Ga) Q) (Tslad,
a0 that,

Ay (Q) = [ 4Qu AMQ1 Q) (11212

defines the |¢, )} representation of a reduced operator A,



The different forms of the partial trace
depend on the Hilbert —Schmidt product
of each basis with the i1dentity.
For the position basis:
(G =trl | jlay| =d(a- —ay ),
a0 that

4(Qn) = [ de_dey AQ),Qa=(00.]) 3(e- — )

= [ d¢ G (¢,0)

Recall the matrix notation:
AL (4. 9)=(q. (0, =D |A| 41, (22, =) )



In the centre representation, we have simply
(F|xh =trT (2"R,) =1,

leading to the phase space projection:
Ayla) = [ dx Alx,%)

The simplest choles turme out to be the chord representation.
Then, I} = Ti_y iz an element of the operator basis, so that

(T [y = d(y) = 8(8).

inatead of projecting . we obtain the reduced operator
merely by alicing throush the chord symbeal:

Arif1) = Alb, £ =0).
In the caze of the chord funetion,

xi(6) = (@ra) ™ x (6,6 =0).



Motice that the operators
|:rrl:"'::'1 —T;l TE’1 @Iﬂ

are a subaset of the translation operators
a representation in terms of the restncted translation

operators, f'i:.'lr would not be complate.

Likevwnase, we may define the reatneted unitary reflections

|:s-:1::|}1 = Eﬁlﬁ;u = ﬁﬁl EEMFE,

but thege do not belong to the centre basis

Ewen a0, we may alzo define
directly the reduced operator Ay as

= [ M) path, with A Gq) = ek (29RL)



PRODUCT STATES

Let ug now apeclalize to denaity operators. All the repregentations that we have besn
dizscussing will factorin thecase that 5= (|0 @[y} ) ({2l | @ (x|} iz a product purs state.
For ingtance, Wix) =W (x) Wylxy) and ¥(£) = v1(£1) ¥a(£s). These relationz may be
interpreted in termes of average values of the basiz operators, ie, (H.) = Cﬁ;h} I:E:Q:&
and {ﬁﬁ = {f;'l:& {'f;fg:: Thus, a sufficient criterion for the existence of entanglemeant. is
that either of these equalities not hold for some centre, x, or some chord £,

(Ao = (AL} (R,

(b = (T (T

Cross correlations imply entanglement



It 1s more usual to measure the entanglement by the purity
of just one of the partial traces:

e = [ dx WaGx)l? = [ déa b (e

Why 1s this the same measure as for subsystem-2 ?
Use Fourier invariance of quantum correlations:

brf] = fd(fﬂ}i'i(flﬂfg = 0jf* Zfdflf (Eiz}th[ﬁ}Fe“mh
=fdﬂ|:tli?ﬂ|95{m}=trf5§-

Reanterprated in terms of Wiener functions,

f‘iﬁl 471 (3¢, )] f‘j}fz [Walm)]",

Equality is not expected for the second moment of marginal distributions.




7.Classical entanglement

We now entangle a simple, L=2, product state,
Wy [3"::' — WD[:EI}WDEEE} and In(f:‘ = In[:'fl ::'IIII [fz:‘
This 1s acted on by the Hamiltonian,

H =pigs — g (angular momentum Lg).

(classical, or Weyl representation)
Being quadratic, this merely rotates both the p and the q coordinates
in the argument of W (x) and (&)



Then, after a n'/ 4 rotation,

I.rl:ll::(f] — IDI:'fF'l + gi'-'r':z é'i'l _I_‘f'i'ﬂ} ID['EF'I

_gj"-r':a ‘f-i‘l_'g'i'ﬂjl

V2 V2

The reduced density 1s just a section, so

92

- ‘E,ﬂ:-l ‘qu
Il['fl:' — _IDI:'-.,-""E? “-,-""E:I




To show how classical an entanglement can be,
choose a simple Gaussian state, the product of

HO ground states:

1

Walxg) = TEEHIJ

1
Xolts) = o— exm

|

2]

1

v 2
_EEI;;_EP:;];
W Ea ¢

LT mw

Thug, the probability distnbution for positions,

fla) = fdp W (x)

1s also a Gaussian, with elliptic level curves that are also rotated.

After rotation and the partial trace:

(

s,
i

X1 [‘El]‘ = Iﬂliﬁ(fp1r ﬂém} = In'i”"f@él]-




The narrowing of the Gaussian shows that the state 1s not pure.
The Wigner function is more intuitive:
Obtained by rescaling the symmetric chord function,

W) = %W.;. (%}

This broader Gaussian still integrates to one.
It could be obtained as an average over
pure Gaussian Wigner functions.

Ancther confirmation that thiz iz not a pure state iz that

il = f da W]’ = fda )l <1

Is this a freak?
Nothing could be more classical for a start (positive Wigner function)
and then a classical rotation produces entanglement!



Analyze the parity:

Both the initial state and the rotated density operator
commute with fiy. However, W0} <« &,

so 1t does not have pure parity.

There 1s a finite probability to obtain negative (odd) parity,
if such a measurement 1s performed on subsystem-1.

The same holds for subsystem-2.

All the deductions proceed as before.

In both cases, all the pure states, into which

the reduced density operator can be decomposed,
have pure parity, but they are not all even.

How have we generated the probability of negative parity
measurements in both subsystems?



The crucial point 1s that the rotated state 7, does not commute
with either of the partial reflections, ﬁgf: j = H,EI:E)?
even though it commutes with their product:

Ro = Ry(1)RA(2) = Ry(2) A5(1)

To understand the measurement of either of the partial reflections,
we need a common basis for all these operators.

This 1s just the product of an even-odd basis

for subsystem-1 and subsystem-2

For this we have the table: SLEYL () SUETE — SUETL
Since & is even, it must be euen @ odd — odd

a superposition of basis states:

eUEN @ cUen, or, odd@odd. odd @ even — odd
Evolved state has odd & odd — even

FULL PARITY CORRELATION.



A true entangled state?

It 1s correctly described as entangled,
with all the nonclassicality that this implies.

The secret lies in choosing the property to be measured:
A position measurement on one of the subsystems
would not distinguish between this pure quantum state
and a classical distribution.



Entanglement 1s not an intrinsic property.
It 1s only meaningful for a specific basis.

like a semiclassical caustic

If the physical realization of the system

were the ground state of a 2-D HO,

then the entanglement producing rotation

would merely produce a coordinate transformation
to a completely equivalent system.

It would make no sense to say

that the original system became entangled,
while the original system was a mere product,
unless all measurements be restricted

to the original coordinate axes.



8. Entanglement and decoherence

Now generalize the previous example to

a small system, with I = 1 and phase apace .
and a large environment, reprasented by x,

a 2(L — 1)-dimemeional wector,

Simplify with some drastic assumptions:

(i) The full Hamiltonian, Az, %) iz quadratic.
Thiz means that the interaction,
e 18 abt most bilinear 1n the components of &, and &,

(1) No movement in the environment,

except that driven by the interaction, H,_ (x,,X).

But we allow an internal Hamiltonian, H(x,) = = H; =,
where Hy 12 a symmetne matnx



(iil) The full Hamiltonian iz periodic in time:
The Hamiltonian A 18 awitched

on ite own for a time 1,
then 1t 1z subsatituted by Hyy for a time and a0 oo

The 1nternal evolution within a single period
1s given by T1 — MLz, | where
Ml — 22X Iitlll:lHljl
propagates the argument of either the Wigner function,
or the chord function.

The environment remains constant in this step,
but moves together with X; when the interaction is turned on.

Take the limit of short interaction time:
T, — ] 4+ exy and T — 41

Then 1(E) does not depend on %1 and ﬁfﬂil} is independent of & .



a choice of 1nitial state:

1 ] @ g 2
- —(m—m R Cabm )R _xgh A ]
W) = T e {E eE +2e7 oo —x A |
o
=) = o 1 iy | @I iR | ot/ ) R oo IR o —Elﬂm]
TRl e

an even Schroedinger cat

the full state being its product
with a mutidimensional coherent state,
centred on the unknown vector, 7 :

. L=
W (%) = (E) e~ MR

* I T
Xﬁ(‘f):(gm) N/ 8 fah

i.e the initial state is represented by

W(x) = W, (x1) Wy(x), or x(4) = x1(&) xa(€).



The state is still a product after the first internal motion,
but now

Wo(x) = W (My7'xy) and x4 (&) — x (Ma™ &)

Turning on the interaction,
we now obtain the chord function after a full period

SirA(E—ef)/h —(E—cé)? jah
2A2mBYE(1 + e/
8_(M1_151 —e61 /2—m)? /b -+ e_((Mflﬁl—Eélf/Eer)g/ﬁ

X&) =

_ : 1 :
1 G My ) /AR o E(Ml_lf_l —e&1) A .



The focus on the chord function now provides the reduced density as merely the section
of the chord function for the entire system, but it should be recalled that (%) does

not depend on 2- and %(21) is independent of Z, so we only keep the latter in the above

[ormula;

eiﬁheé/‘ﬁ e—egﬁ J4f

dnh(1l + e~m/h)

e_(Ml_lalf{Q_Wl)zf('ﬁ’ _I_ e_CMI_l‘E]-J{E_'_n]—)z/ﬁ + 26_[Ml_1£1)2f4ﬁ‘ COS 161 f\ T?l
h

Xe('fl) —

Thus the three terms in the square bracket are identical to that in the orizinal

produci stale, the only novelly being bhe prefacior which leaves the wrace invarian.
2 w0 that the Gaussian envelope

Recall that ur 52 is proportional Lo the integral of [y.(&)
leads to tr g7 < 1, by reducing the contribution of both the classical Gaussians centred

at 17,.



Missing element of decoherence:
Our ignorance as to the initial state of the environment.

Assume a Gaussian distribution
for the coherent states:

- i - R D
psr=(—> fdne ' B
o

w@=(Z) [ i xlé)

so that

Since this will be just a Fourier integral,
the effect on the reduced chord function
1s to substitute the phase factor by a further Gaussian envelope.



Partial tracing and the initial average combine
in the decoherence:

2o (€)= 7.(E) expl-e(l+£0)E?]

The Wigner function 1s a convolution of a widening Gaussian
window with the internally evolved pure state Wigner function.

After a finite time, we obain the pure state Husimi function:
the Wigner function becomes positive.

This 1s the same result as integrating the Lindblad equation
for the density operator in the chord representation:

A link to the general theory for Markovian evolution

of open quantum systems.

Not so surpising: no need of memory 1n a single step,
but our approximations were not excessively severe.



Notice that the classical and the quantum motions are not dissipative.
Quantum Markovian theory accommodates dissipation,
so why is our periodic Hamiltonian conservative of { 1> ?

Consequence of the fact that x; = x, + € x,(X)

is a canonical transformation for each X .
Thus,

H) =|dxW.(x)H,(x)=|d¥|dx, W[x,(—€,%),%1H,(x,)
), =] J |

= [ [ dx, W (x,, %) H,[x, (&, %)] = (H, )



Second period:

Adjust notation: M+ — M

It 1s just as easy to evolve a pure state as a mixture (unitarily).
So, at first, we carry on with the evolved pure state, 1.e.

We evolve the argument of }, () with the same sequence
of symplectic transformations as hefore.,

But remember: the velocities E and E 1 switch subspaces

with respect to § and &3

Then the next internal propagation leads to

exp{ifj A (€ — e£ (M£;))/B} exp{—(& — e£(M£1))?/ 45}
2020 E (1 + exp(— 2/ 1)

exp{ —[M(ME; — e€1(€))/2 — m]*/h} +exp{—[(M(M& — e&1(€))/2 + m]*/r}

+ 2 exp{— [M(ME; — e£1(EN]°/4h} cos{MIME; — €61(€)) Am/R}



Then, turning on the interaction, we have
exp{if} A [€ — e(£(61) + EQVI(& + e&1(E)))]/4h
2027 B)YE(1 + e~ /M)

exp{—[€ — e(€(&:) + EM(& + €& (E))]?/ 48}

exp{ —[M(ME: — e&:(€))/2 — e€(€ — e&(61)) /2 — m1]?/8)
1 exp{ —[M(M¢&; — €£:1(€))/2 — e&1(é — Eff(fﬂ)/z +m]* /1)
+ 2exp{—[M(ME; — e&1(&)) — 1€ — e£(£1))/2]° /4h}
cos{ =[M(ME; — ey () — €,(E — €(€)/2 A}

X?E(E)



and the partial trace slices through the full chord function to obtain:

Xk(&) =
exp{if] A [—e(€(£1) + EM(E)))] /5} exp{—[—e(£(&:) + E(M(&,)))]2/ 45}

Awh(1 + e /M)

exp{—[M(M&:)/2 — ebs(—e€(&1))/2 — P/ 1)
+exp{—[M(ME£:)/2 — eés(—€€(£1))/2 + mi]*/}
+ 2exp{—[M(M&:) — eba(—e£(&1)) /2] /4n}
cos{ -[M(M1)) — ebs(~<E(61))/2] Am}|

Note that the linear phase factor 1s altered by the displacement
of the single environmental coherent state,
caused by the system during the first interaction.
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W/ — 2 /[(13)32-) 7 — 2/ C7MDIN] — pdxe
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This kind of deduction as a weak coupling approximation
is well known in quantum optics. In which case
the internal Hamiltonian is the HO.

Markovian theory 1s developed abstractly
and 1s independent of any particular
model of the environment.

The motion of a quadratic system that 1s
linearly coupled to the environment

1s purely classical, even when dissipative.

The memory of previous motion of the system,
which is relayed back by the environment,

can not be accommodated by a differential equation.
The Feynman-Vernon functional

1s the most natural instrument.

(Caldeira-Leggett)



Chaotic decoherence?

Generally the quadratic form H, may be
elliptic, or hyperbolic (real eigenvalues).
In the latter case, decoherence proceeds much faster.

General hyperbolicity of chaotic systems indicates
that they are a bad option for preserving
quantum coherence.



What happens if we measure the parity of
a very decohered density operator?

2

W(x )+1‘»("-”i—ﬂ+”‘("“{ 2Ax~X) ""‘f_r

WH(x)=

1

1
9 fir:zﬁ'w(}{)



The original state:
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Schroedinger cat,
mixed by decoherence.

spiky, but mixed cat,
after parity measurement.
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Parity resurection
of a dissolved cat.




9. A semiclassical picture of entanglement

A ftull theory lies 1n the future.

Note that the possibility of fitting even the caustics of
semiclassical states with Gaussians shows that

the examples with Schroedinger cats were not irrelevant.
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fitted Wigner fun(:tion1 .
72 Gaussians used
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Semiclassical Wigner and chord functions

Recall that dyadic operators, |%}{¢/,
correspond to the Lagrangian surface, ), @ A,
in double phase space.

The pure state density operator, p = |¢){g|,

1s a particular case.

If the state corresponds to an L-D quantized torus

in (2L)-D phase space,

then the density operator corresponds to a (2L)-D torus
in (4L)-D double phase space.

Using centre coordinates, X, the Wigner function
1s obtained just as the centre representation of a unitary operator:

U (x) = As(x) explaSs(x)/A),



The problem is to relate the amplitudes and the phases
of each branch of the Lagrangian surface
to the torus in single phase space.

Consider again the Fock states:

09 = L e, (22)

M

introducing the asymptotic expression
for Laguerre polynomials:

lim L, (JJ = Jo (V22) ,

together with the large argument expansion,

2 T
s en(s-3)

which 1s already in semiclassical form.



Every point on the double torus represents
a pair of points on the quantized curve.

The conjugate variable to X = (x, + z_)/2
is y=J&, where E =2, —x_
1s a geometrical torus chord.

the exchange of =, with x_ produces a new chord

Thus, the 2-D Lagrangian surface 1s symmetric
with respect to the y=0 plane:
the semiclassical Wigner function is always a cosine.

Close to a convex quantized curve
there is a single pair of chords.



This 1s the y=0 plane.
We can think of the
quantized curve as lying
in the x_space, the X, space,
or in the centre, X space,

1.e. as the intersection

of the Lagrangian surface
with the y=0 plane .

A pair of Lagrangian sheets
are joined along this curve,
so it is a caustic

of the Wigner function.

The L curve 1s also a caustic,
where chords coalesce:

A remnant of the central
Fock peak.




How can we construct the chords centred on a known centre, X ?

Recall that, for a pure state,
Wy(x) = (7h) ™ (b|(Bx[¥))

so, reflect the classical torus that corresponds to (Fx| %)) .
The 1ntersections of the quantized curve/tv ,

with its reflection, R_ (;t‘// ),

determine all chords that are centred on x.

Likewise, the fact that
(&) = (2rr) = (@[(T¢|v))

relates to the fact that all the centres, corresponding to a given chord,
are specified by the classical translation, Té: (/L/, ),
of the quantized curve.



Phase of the semiclassical Wigner function?

General principle:

The phase difference between a pair of

semiclassical contributions to the overlap, (¥ |@),

of quantum states 1s the area

sandwitched between ﬂw and lq, ;

divided by l. (Littlejohn)

All these constructions can be generalized
to higher dimensions.

Caustics of the Wigner function, where chords coalesce;
caustics of the chord function, where centres coalesce.
For open curves, the chord function may be simpler:

A single branch, no interference, no caustics.



Evolution of the doubled torus

The classical Hamiltonian, H(x),

accounts for the classical evolution of both x_andx _ .
Due to the change of sign, »— — —P—,

the double phase space Hamiltonian has to be

H(X)=H(z,)—H(z_)= H(x—Jy/2) — Hx + Jy/2).

'T'his Hamiltonian will alwaye preserve the product form of the geometric structures in
cach of the phase spaces wyq, bul b will pot preserve witial products within cach of
these in the general case that the single Hamiltonian H (x) has coupling terms between
different deprees of freedom. The semiclassical theory of evolution in donble phase space
has recently led to the definition of caustic-free propagators for the Wigner and chord
functions. These arc defined in terms of the propagation of the reflection oporators, or

the translation operators, instead of directly evolving the density operator itself.



Classical separability
disentangling...

Any quantum state 1n a product Hilbert space
can be made separable by a unitary transformation.

Can any torus in a product phase space be separated
by a canonical transformation?

Yes, by transforming to action-angle variables,
though this may not be exactly equivalent
to any quantum transformation.



What about ergodic eigenstates of a chaotic Hamiltonian?

These are states that correspond to an entire energy shell (3-D),
instead of a Lagrangian torus (2-D) in a 4-D phase space.

No complete semiclassical theory, but
Shnirelman’s theorem:

For most of the chaotic eigenstates,
averages of smooth observables are obtained
as if the Wigner function were 0(H (x)—E ).

No canonical transformation will transform
a 3-D sphere into a 2-D torus. (let alone separable)
Is the corresponding quantum state harder to disentangle?

QUANTUM CHAOLOGY (M.V. Berry)
The search for quantum effects of classical chaos...



