QUANTUM CRITICALITY IN NbFe₂

<u>M. Brando¹</u>, D. Moroni-Klementowicz², C. Albrecht², W. Duncan², D. Grüner¹, R. Ballou³, B. Fåk⁴ and F. M. Grosche²

¹ Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, D-01187 Dresden, Germany

² Dept. of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK;

³ Laboratoire Louis Néel, CNRS, B.P. 166 38042 Grenoble Cedex 9, France;

⁴ Commissariat à l'Energie Atomique, Département de Recherche Fondamentale sur la Matière Condensée, SPSMS, 38054 Grenoble, France

Quantum phase transitions and the associated critical behaviour provide a successful guiding principle towards novel forms of electronic self-organisation. While examples of quantum critical behaviour abound in 4f-electron metals, such as the heavy fermion Ce- and Yb-compounds, comparatively few transition metal compounds have been studied in detail, most notably the nearly or weakly ferromagnetic materials MnSi, Ni₃Al/Ni₃Ga, ϵ -Fe and ZrZn₂, as well as layered oxides such as the high- T_c cuprates and the ruthenates.

We present an investigation of the C14 Laves phase NbFe₂, which has been reported as a rare example of low temperature spin density wave order ($T_N \simeq 10$ K) among the d-metal compounds [1]. The low temperature state of NbFe₂, which develops out of incipient ferromagnetism with a record Stoner enhancement factor of about 150, can be tuned by slightly modifying the composition within the narrow Nb-Fe homogeneity range [2]. Slight Fe-excess induces lowmoment ferromagnetism, whereas a quantum critical point ($T_N \rightarrow 0$) is approached on the Nb-rich side (for $\simeq Nb_{1.01}Fe_{1.99}$).

We report non-Fermi liquid power-law forms in the electrical resistivity with exponents approaching 1.5 - 1.7 at low temperatures for polycristalline and single crystal samples across the homogeneity range. Moreover, in slightly Nb-rich NbFe₂, which shows no evidence of bulk magnetic order, we find strongly temperature dependent Sommerfeld coefficients of the heat capacity $C/T \sim \log T$ over more than a decade in temperature [3]. These findings, which point at the existence of an effectively ferromagnetic quantum critical point in slightly Nb-rich NbFe₂, are discussed with reference to related f- and d-metal compounds. [1] Y. Yamada and A. Sakata, J. Phys. Soc. Japan 57 (1988) 46; M. M. Crook *et al*, J. Magn. Mater. 140 (1995) 71. [2] M. Brando et al., Physica B 378-380 (2006) 111. [3] M. Brando et al., JMMM (2006) In Press.