Novel Josephson Effect in Triplet-Superconductor–Ferromagnet–Triplet- Superconductor Junctions

<u>Dirk Manske^{1,2}</u>, Dirk K. Morr³, Boris Kastening^{4,5}, K.H. Bennemann⁵, and M. Sigrist²

¹ Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
² ETH Zürich, Hönggerberg, Zürich, Switzerland

 3 Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA

⁴ Institut für Theoretische Physik, RWTH Aachen, Germany

 5 Institut für Theoretische Physik, Freie Universität Berlin, Germany

We predict a novel type of Josephson effect to occur in triplet-superconductorferromagnet-triplet-superconductor (TFT) Josephson junctions [1]. We show that the Josephson current, I_J , exhibits a rich dependence on the relative orientation between the ferromagnetic moment and the **d** vectors of the superconductors. This dependence can be used to build several types of Josephson current switches. Moreover, we predict an unconventional sign change of I_J with increasing temperature. Our proposed junction can (a) be used as a new phase-sensitive device and (b) is also relevant for quantum computing because a two-level system can be realized.

[1] B. Kastening et al., PRL 96, 047009 (2006)