Interplay between the orbital and magnetic order in monolayer manganites

Krzysztof Rościszewski¹ and Andrzej M. Oleś^{1,2}

¹ Marian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, PL-30059 Kraków, Poland

² Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

We adopt the two-dimensional model for e_g electrons in a monolayer [1] to describe an undoped and half doped manganite $\text{La}_{1-x}\text{Sr}_{1+x}\text{MnO}_4$ and study it using correlated wave functions. The effective Hamiltonian takes into account the kinetic energy, the crystal field splitting and on-site Coulomb interactions for e_g electrons. They interact with S = 3/2 core spins due to t_{2g} electrons. Furthermore, the model includes other important interactions in the manganites [2]: antiferromagnetic superexchange interaction between core spins, and the coupling between e_g electrons and Jahn-Teller modes. The model reproduces the antiferromagnetic order in the undoped LaSrMnO₄ compound, with occupied $3z^2 - r^2$ orbitals and elongated MnO₆ octahedra along the direction perpendicular to the Mn–O plane. In half doped La_{0.5}Sr_{1.5}MnO₄ manganite one finds rubust checkerboard-like charge order, in agreement with experiment [3]. However, the experimentally observed CE phase is more difficult to stabilize, and we discuss the necessary conditions to obtain it. Altogether, we conclude that the Jahn-Teller effect plays the crucial role, as shown in Ref. [4].

- [1] K. Rościszewski and A. M. Oleś, J. Phys.: Condensed Matter 15, 8363 (2003).
- [2] A. Weisse and H. Fehske, New J. Phys. 6, 158 (2004).
- [3] D. Senff et al., Phys. Rev. B **71**, 024425 (2005).
- [4] J. Bała, P. Horsch, and F. Mack, Phys. Rev. B 69, 094415 (2004).