Dynamic spin conductivity of Heisenberg antiferromagnets

Michael Sentef*

Institute of Physics, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany

Abstract

We study the dynamic spin conductivity of insulating antiferromagnets described by the XXZ Heisenberg model with an anisotropy parameter Δ . Spin currents flow in response to a magneticfield gradient or, in systems with spin-orbit coupling, perpendicular to a time-dependent electric field. The dynamic spin conductivity at zero temperature is calculated within interacting spinwave theory in two and three dimensions. At the isotropic point ($\Delta = 1$), which separates the Ising regime ($\Delta > 1$) from the XY regime ($\Delta < 1$), we find that the dimensionality of the system plays a crucial role: In d = 3 the regular part of the spin conductivity vanishes linearly in the zero frequency limit, whereas in d = 2 it approaches a finite zero frequency value.

[1] M. Sentef, M. Kollar, and A. P. Kampf, cond-mat/0612215 (2006).

^{*}Electronic address: michael.sentef@physik.uni-augsburg.de