Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate

A. V. Sologubenko,¹ K. Berggold,¹ T. Lorenz,¹ A. Rosch,² E. Shimshoni,³ M. D. Phillips,⁴ and M. M. Turnbull⁴

¹ II. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

² Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany

³ Department of Mathematics-Physics, University of Haifa at Oranim, Tivon 36006, Israel and

⁴ Carlson School of Chemistry and Department of Physics, Clark University, Worcester, MA 01610, USA

We present experiments on the thermal transport in the spin-1/2 chain compound copper pyrazine dinitrate $\mathrm{Cu}(\mathrm{C_4H_4N_2})(\mathrm{NO_3})_2$. The heat conductivity shows a surprisingly strong dependence on the applied magnetic field B, characterized at low temperatures by two main features. The first one appearing at low B is a characteristic dip located at $\mu_B B \sim k_B T$, that may arise from Umklapp scattering. The second one is a plateau-like feature in the quantum critical regime, $\mu_B |B - B_c| < k_B T$, where B_c is the saturation field at T=0. The latter feature clearly points towards a momentum and field independent mean free path of the spin excitations, contrary to theoretical expectations.