The Gutzwiller variational theory: Electronic

# and magnetic properties of transition metals

- (J. Bünemann, Philipps-Universität Marburg, Germany)
- Outline: I) Introduction
  - II) Generalised Gutzwiller theory
  - III) Ferromagnetism in a two-band Hubbard model
  - IV) Model systems for transition metals
  - V) Nickel
  - VI) Iron

Collaborators: F. Gebhard (Marburg)

W. Weber, S. Weiser, T Ohm (Dortmund)

### I) Introduction

#### Consider: one-band Hubbard model:

$$\hat{H} = \sum_{i,j,\sigma} t_{i,j} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \sum_{i} U \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

Gutzwiller variational wave function (1963):

$$|\Psi_{\rm G}\rangle = \hat{P}|\Phi_0\rangle$$
 with  $\hat{P}_{\rm G} = \prod_i \hat{P}_{{\rm G},i}$   
 $|\Phi_0\rangle$  : one-particle wave function (Slater-determinant)

Gutzwiller-correlator: 
$$\hat{P}_{\mathrm{G},i} = \sum_{\Gamma} \lambda_{\Gamma} |\Gamma 
angle_i \langle \Gamma |_i$$

with variational parameters  $\,\lambda_{\Gamma}\,$ 

and 'atomic' eigenstates:

$$|\uparrow\rangle_i = \hat{c}^{\dagger}_{i,\uparrow} |\mathrm{vac}\rangle$$
,  $|\downarrow\rangle_i = \hat{c}^{\dagger}_{i,\downarrow} |\mathrm{vac}\rangle$ 

 $|\emptyset
angle = |\mathrm{vac}
angle$  ,  $|d
angle_i = \hat{c}^{\dagger}_{i,\uparrow}\hat{c}^{\dagger}_{i,\downarrow}|\mathrm{vac}
angle$  ,

Problem:  $|\Psi_G\rangle$  is still a many-particle wave-function



in general not possible

#### **Gutzwiller** approximation:

$$E_{\text{var}} = \sum_{i,j,\sigma} q_{\sigma}^2 t_{i,j} \langle \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j,\sigma} \rangle_{\Phi_0} + U \sum_{i} \lambda_d^2 (\underbrace{n_{\uparrow,0} n_{\downarrow,0}}_{= \langle \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} \rangle_{\Phi_0}}_{= \langle \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} \rangle_{\Phi_0}}$$

#### with renormalisation factors

$$q_{\uparrow} = \lambda_{\emptyset} \lambda_{\uparrow} (1 - n_{\downarrow,0}) + \lambda_d \lambda_{\downarrow} (n_{\downarrow,0}) \qquad (n_{\sigma,0} = \langle \hat{n}_{\sigma} \rangle_{\Phi_0})$$

### Generalised Gutzwiller theory

Multi-band Hubbard models:

$$\hat{H} = \sum_{i \neq j; \sigma, \sigma'} t_{i,j}^{\sigma, \sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'} + \sum_{i} \hat{H}_{\text{loc},i} = \hat{H}_0 + \hat{H}_{\text{loc}}$$

with local 'atomic' Hamiltonian (index i skipped):

$$\hat{H}_{\text{loc},i} = \sum_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} U_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} \hat{c}^{\dagger}_{\sigma_1} \hat{c}^{\dagger}_{\sigma_2} \hat{c}_{\sigma_3} \hat{c}_{\sigma_4} + \sum_{\sigma_1,\sigma_2} \varepsilon_{\sigma_1,\sigma_2} \hat{c}^{\dagger}_{\sigma_1} \hat{c}_{\sigma_2}$$
$$= \sum_{\Gamma} E_{\Gamma} |\Gamma\rangle \langle \Gamma|$$

- $\sigma$  : combined spin-orbital index
- $|\Gamma\rangle$  : atomic eigenstates with energies  $E_{\Gamma}$  (assumed to be known, at least numerically)

generalised Gutzwiller wave functions:

$$|\Psi_{\rm G}
angle = \hat{P}|\Phi_0
angle$$
 ,  $\hat{P}_{\rm G} = \prod_i \hat{P}_{{\rm G},i}$ 

 $|\Phi_0
angle$  : one-particle wave function

with

$$\hat{P}_{\mathrm{G},i} = \sum_{\Gamma,\Gamma'} \lambda_{\Gamma,\Gamma'} |\Gamma\rangle_i \langle \Gamma'|_i \quad (\lambda_{\Gamma,\Gamma'}: \text{variational parameters})$$

evaluation in infinite dimensions:

$$E_{\rm loc} = L \sum_{\Gamma} E_{\Gamma} m_{\Gamma} \qquad (m_{\Gamma} \equiv \langle \hat{m}_{\Gamma} \rangle_{\Psi_{\rm G}})$$

$$E_{0} = \sum_{i \neq j} \sum_{\gamma, \gamma'} \sum_{\sigma, \sigma'} Q_{\sigma, \sigma'}^{\gamma, \gamma'} t_{i, j}^{\sigma, \sigma'} \langle \hat{c}_{i, \gamma}^{\dagger} \hat{c}_{i, \gamma'} \rangle_{\Phi_{0}}$$

$$\equiv \tilde{t}_{i, j}^{\gamma, \gamma'} \qquad \text{(effective hopping)}$$

 $m_{\Gamma}$  and  $Q_{\sigma,\sigma'}^{\gamma,\gamma'}$  are functions of  $\lambda_{\Gamma,\Gamma'}$ and of the local density matrix  $C_{\sigma,\sigma'}^{0} = \langle \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i,\sigma'} \rangle_{\Phi_{0}}$ minimisation with respect to  $|\Phi_{0}\rangle$ :

effective one-particle Schrödinger equation for  $|\Phi_0\rangle$ :  $\hat{H}_{0}^{\text{eff}} |\Phi_{0}\rangle = E_{0}^{\text{eff}} |\Phi_{0}\rangle$  $\hat{H}_{0}^{\text{eff}} = \sum \sum \tilde{t}_{i,j}^{\sigma,\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'} + \sum \sum \eta_{\sigma,\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'}$  $i \neq i \sigma . \sigma'$  $i \quad \sigma.\sigma'$ Lagragne multipliers  $\eta_{\sigma,\sigma'}$  determine density matrix  $C^0_{\sigma,\sigma'}$ Diagonalisation:  $\hat{H}_{0}^{\text{eff}} = \sum E_{k,\gamma} \hat{h}_{k,\gamma}^{\dagger} \hat{h}_{k,\gamma} |\Phi_{0}\rangle = \prod \hat{h}^{\dagger} |0\rangle$  $k.\gamma$  $(E_{k,\gamma}^{k,\gamma} < E_{\mathrm{F}})$ 

remaining variational parameters:  $\lambda_{\Gamma,\Gamma'}$  and  $\eta_{\sigma,\sigma'}$ 

Remaining problems:

- i) Number of variational parameters, e.g. 3d-shell:
  - if  $\lambda_{\Gamma,\Gamma'}$  finite for all  $\Gamma,\Gamma'$  with the same particle number
  - $\longrightarrow \approx 2 \cdot 10^5$  variational parameters

solution: finite coupling only for 'relevant'  $\Gamma, \Gamma'$ e.g.  $\lambda_{\Gamma,\Gamma'} \sim \delta_{\Gamma,\Gamma'}$ 

ii) How to compare to experiments?

Landau-Fermi liquid theory: quasi-particle energies  $E_{k,\tau}$ 

from 
$$\hat{H}_{0}^{\text{eff}} = \sum_{k,\gamma} E_{k,\gamma} \hat{h}_{k,\gamma}^{\dagger} \hat{h}_{k,\gamma}$$
  
$$= \sum_{i \neq j} \sum_{\sigma,\sigma'} \tilde{t}_{i,j}^{\sigma,\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'} + \sum_{i} \sum_{\sigma,\sigma'} \eta_{\sigma,\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'}$$

## III) Ferromagnetism in a two-band model

#### Local Hamiltonian:

$$\hat{H}_{\text{loc}} = U \sum_{b} \hat{n}_{b,\uparrow} \hat{n}_{b,\downarrow} + U' \sum_{\sigma,\sigma'} \hat{n}_{1,\sigma} \hat{n}_{2,\sigma'} - J \sum_{\sigma} \hat{n}_{1,\sigma} \hat{n}_{2,\sigma} + J \sum_{\sigma} \hat{c}^{\dagger}_{1,\sigma} \hat{c}^{\dagger}_{2,-\sigma} \hat{c}_{1,-\sigma} \hat{c}_{2,\sigma} + J_C \left( \hat{c}^{\dagger}_{1,\uparrow} \hat{c}^{\dagger}_{1,\downarrow} \hat{c}_{2,\downarrow} \hat{c}_{2,\uparrow} + \text{h.c.} \right)$$

 $e_{\rm g}$  -orbitals:  $J = J_C$  and U - U' = 2J

two-particle states:

| states                                                                                                                                              | energy | symmetry        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|
| $ert \uparrow,\uparrow angle \ (ert \uparrow,\downarrow angle + ert \downarrow,\uparrow angle)/\sqrt{2} \ ert \downarrow,\downarrow angle$          | U - 3J | ${}^{3}\!A_{2}$ |
| $ ( \uparrow,\downarrow\rangle -  \downarrow,\uparrow\rangle) / \sqrt{2} ( \uparrow\downarrow,0\rangle -  0,\downarrow\uparrow\rangle) / \sqrt{2} $ | U - J  | ${}^{1}\!E$     |
| $\left( \uparrow\downarrow,0 angle+ 0,\downarrow\uparrow angle ight)/\sqrt{2}$                                                                      | U+J    | ${}^{1}\!A_{1}$ |

#### Gutzwiller wave-function: i) no multiplet coupling

 $\lambda_{\Gamma,\Gamma'} \sim \delta_{\Gamma,\Gamma'}$ 

- $|\Gamma
  angle$  : atomic eigenstates
- ii)  $|\Phi_0
  angle$  : spin-polarised Fermi-sea

density of states:



#### Results:

phase-diagram

condensation-energy



### IV) Transition metals: model systems

- i)  $\hat{H}_0$ : from tight-binding fits to the paramagnetic DFT band-structures (4s,4p,3d-orbitals)
- ii)  $H_{\text{loc}}$ : onsite energy  $\varepsilon_{\sigma,\sigma}$  (from tight-binding fits)
  - Coulomb-interaction: spherical approximation

Racah parameters:

A = 8 - 9 eV (from 3d band-width)  $\left. \begin{array}{c} B \approx 0.1 \mathrm{eV} \\ C \approx 0.4 \mathrm{eV} \end{array} \right\}$  (from atom physics)

 $\sigma.\sigma'$ 

iii) local spin-orbit coupling  $\hat{H}_{\rm SO} = \frac{\zeta}{2} \sum \langle \sigma | \hat{\vec{l}} \cdot \hat{\vec{s}} | \sigma' \rangle \hat{c}_{\sigma}^{\dagger} \hat{c}_{\sigma'}$  $\zeta \approx 0.08 \mathrm{eV}$  (from atom physics)

### V) fcc-Nickel

Comparison: ARPES (exp)  $\checkmark$  SDFT i) width of d-bands:  $W \approx 3.3 \mathrm{eV}$  (exp)  $W \approx 4.5 \mathrm{eV}$  (SDFT)

experimental band-structure not reproduced

- ii) exchange splitting of  $\uparrow \downarrow$  bands:
  - $\begin{array}{ll} \text{(SDFT)} & \text{(exp)} \\ \Delta \approx 0.7 \mathrm{eV} & \Delta \approx 0.16 \mathrm{eV} \ (e_{\mathrm{g}}) \\ \text{(isotropic)} & \Delta \approx 0.33 \mathrm{eV} \ (t_{\mathrm{2g}}) \end{array}$

iii) Topology of the Fermi-surface around the X-point:

$$\begin{array}{l} \text{(SDFT)} & \begin{array}{c} X_{2\downarrow}(e_{\mathrm{g}}) \\ \\ X_{5\downarrow}(t_{2\mathrm{g}}) \end{array} & \begin{array}{c} \text{above } E_{\mathrm{F}} \end{array} & \begin{array}{c} & \begin{array}{c} \end{array} & \begin{array}{c} 2 \text{ hole-ellipsoids} \end{array} \\ \text{(Exp)} & \begin{array}{c} X_{2\downarrow}(e_{\mathrm{g}}) \end{array} & \begin{array}{c} \text{below } E_{\mathrm{F}} \\ \\ X_{5\downarrow}(t_{2\mathrm{g}}) \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} 1 \text{ hole-ellipsoids} \end{array} \end{array} \end{array}$$

Results of the Gutzwiller theory (without spin-orbit coupling)

- i) d-band width: 3.3 eV (correct by construction)
- ii) Exchange splitting:  $\Delta \approx 0.13 \text{eV} (e_{\text{g}}) \quad (\text{exp:}0.16 \text{eV})$   $\Delta \approx 0.29 \text{eV} (t_{2\text{g}}) \quad (\text{exp:}0.33 \text{eV})$
- iii) Correct Fermi-surface topology around the X-point:

$$E(X_{2\downarrow}) - E_{\rm F} \approx -0.02 \,\mathrm{eV} < 0$$

iv) Correct quasi-particle bands

#### Comparison: ARPES ---- Gutzwiller-theory



Spin-orbit coupling in fcc-Nickel

i) orbital moment:  $\mu_{
m orb} pprox 0.05 \mu_{
m B}$  (compare:  $\mu_{
m spin} pprox 0.5 \mu_{
m B}$ )

ii) magnetic anisotropy:

$$E(111) - E(001) \approx -3\mu eV < 0$$
 (exp/GW)  
 $\vec{\mu} ||(111) > 0$  (in SDFT)

iii) 'Gersdorf effect':

One of the states  $X_{2\downarrow}$  moves above  $E_{\rm F}$  if the magnetic moment direction is changed by a magnetic field

#### Gersdorf effect:



#### Fermi-surface:



# <u>VI) bcc-Iron</u>

Comparison: Experiment  $\frown$  SDFT i) width of d-bands:  $W \approx 3.8 {\rm eV}$  (exp)  $W \approx 4.5 {\rm eV}$  (SDFT)

experimental band-structure not well reproduced ii) exchange splitting of  $\uparrow - \downarrow$  bands: strong energy and orbital dependence:  $\Delta pprox 0.9 - 2.1 \mathrm{eV}$  from lowest-highest d-bands iii) orbital moment:  $\mu_{
m orb} \approx 0.1 \mu_{
m B} ~(\mu_{
m spin} \approx 2.1 \mu_{
m B})$ iv) magnetic anisotropy:  $E(111) - E(001) \approx 1.5 \mu eV > 0 \longrightarrow \vec{\mu} ||(001)$ 

#### Problems and first results

i) magnetic anisotropy:

with diagonal variational parameters  $(\lambda_{\Gamma,\Gamma'} \sim \delta_{\Gamma,\Gamma'})$ 



mixing of states is not important

But for Iron:

anisotropy energy <u>3 orders</u> of magnitude too large

the atomic states must be determined variationally

$$\hat{P}_{\rm G} = \sum_{\tilde{\Gamma}} \lambda_{\tilde{\Gamma}} |\tilde{\Gamma}\rangle \langle \tilde{\Gamma}| = \sum_{\Gamma, \Gamma'} \lambda_{\Gamma, \Gamma'} |\Gamma\rangle \langle \Gamma'|$$

first numerical implementation:



ii) Energy dependence of the exchange splitting

cannot be explained without 4d-orbitals in the Hamiltonian

reason: large exchange-splitting in Iron



majority and minority bands hybridize differently with 4d-bands



increasing exchange-splitting from the bottom to to the top of the 3d-bands

### Summary and Outlook

- 1) The Gutzwiller variational theory is a promising new tool for the investigation of real correlated electron systems
- 2) Further studies on Iron and other transition metals will be needed to assess the quality of the approach
- 3) A time-dependent Gutzwiller theory is available for the one-band Hubbard model (Götz Seibold et al.)



work on multi-band models will start soon

#### Landau-Gutzwiller quasi-particles

There is a one-to-one correspondence of excitations in a Fermi-liquid and those in a Fermi-gas

Mathematically: there are operators  $\hat{e}_{k,\tau}^{\dagger}$  and  $\hat{v}_{k,\tau}$ with  $\hat{e}_{k,\tau}^{\dagger}\hat{v}_{k,\tau}|\Psi_{\rm G}\rangle = \Theta(E_{\rm F}-E_{k,\tau})|\Psi_{\rm G}\rangle$ 

(i.e., Fermi-gas momentum distribution)

one finds Fermi operators:

$$\hat{e}_{k,\tau}^{\dagger} = \hat{P}_{\rm G} \hat{h}_{k,\tau}^{\dagger} (\hat{P}_{\rm G})^{-1}$$
$$\hat{v}_{k,\tau} = \hat{P}_{\rm G} \hat{h}_{k,\tau} (\hat{P}_{\rm G})^{-1}$$



quasi-particle/hole states

$$\begin{split} |\Psi_{\mathrm{G},+}^{(k,\tau)}\rangle &\equiv \hat{e}_{k,\tau}^{\dagger}|\Psi_{\mathrm{G}}\rangle = \hat{P}_{\mathrm{G}}\hat{h}_{k,\tau}^{\dagger}|\Psi_{0}\rangle \\ |\Psi_{\mathrm{G},-}^{(k,\tau)}\rangle &\equiv \hat{v}_{k,\tau}^{\dagger}|\Psi_{\mathrm{G}}\rangle = \hat{P}_{\mathrm{G}}\hat{h}_{k,\tau}|\Psi_{0}\rangle \end{split}$$



quasi-particle energy-bands:

$$E_{\pm}^{\text{var}}(k,\tau) = \frac{\langle \Psi_{\mathrm{G},\pm}^{(k,\tau)} | \hat{H} | \Psi_{\mathrm{G},\pm}^{(k,\tau)} \rangle}{\langle \Psi_{\mathrm{G},\pm}^{(k,\tau)} | \Psi_{\mathrm{G},\pm}^{(k,\tau)} \rangle} - E_{\text{var}} = E_{k,\tau}$$

with  $E_{k,\tau}$  eigenvalues of  $\hat{H}_0^{\text{eff}} = \sum_{k,\gamma} E_{k,\gamma} \hat{h}_{k,\gamma}^{\dagger} \hat{h}_{k,\gamma}$  $\hat{H}_0^{\text{eff}} = \sum_{i \neq j} \sum_{\sigma,\sigma'} \tilde{t}_{i,j}^{\sigma,\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'} + \sum_i \sum_{\sigma,\sigma'} \eta_{\sigma,\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma'}$ 

#### Brinkman-Rice transition at half filling

$$E_{\rm var} = 2\left(2 - \lambda_d^2\right)\lambda_d^2\varepsilon_0 + U\lambda_d^2\frac{1}{4}$$

with  $\varepsilon_0 = \sum_{i,j} t_{i,j} \langle \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j,\sigma} \rangle_{\Phi_0}$  $q_{\sigma}^2 = 1 - \left(\frac{U}{U_c}\right)^2 \qquad (U_c = 16|\varepsilon_0|)$ minimisation:  $\langle \hat{d} \rangle = \frac{1}{4} \left( 1 - \left( \frac{U}{U_c} \right) \right)$ 0.8 0.6 effective mass:  $m^* \sim 1/q 
ightarrow \infty$ d2 0.4  $(U \rightarrow U_c)$ 0.2 0 2 6 10 12 14 16

 $U/|\epsilon_0|$ 

8

4

0

#### **Gutzwiller approximation:**

$$E_{\text{var}} = \sum_{i,j,\sigma} q_{\sigma}^2 t_{i,j} \langle \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j,\sigma} \rangle_{\Phi_0} + U \sum_i \lambda_d^2 (n_{\uparrow,0} n_{\downarrow,0})$$

#### with renormalisation factors

$$q_{\uparrow} = \lambda_{\emptyset} \lambda_{\uparrow} (1 - n_{\downarrow,0}) + \lambda_d \lambda_{\downarrow} (n_{\downarrow,0}) \qquad (n_{\sigma,0} = \langle \hat{n}_{\sigma} \rangle_{\Phi_0})$$

$$\begin{array}{ll} \text{constraints} & \text{i)} & 1 = \sum_{\Gamma} \langle \hat{m}_{\Gamma} \rangle_{\Psi_{\mathrm{G}}} & (\hat{m}_{\Gamma} \equiv |\Gamma\rangle \langle \Gamma|) \\ \\ & \text{ii)} & n_{\sigma,0} = \langle \hat{n}_{\sigma} \rangle_{\Psi_{\mathrm{G}}} \end{array}$$

determine three of the four parameters  $\lambda_{\Gamma}$  e.g. half filling  $n_{\sigma,0}=rac{1}{2}$ 

