Multiscale Methods in

Electronic Structure Calculations

Heinz-Jürgen Flad

Institut für Informatik, Universität zu Kiel

In collaboration with:

- Reinhold Schneider (Universität zu Kiel)
- Hongjun Luo (MPI Leipzig)
- Sambasiva Rao Chinnamsetty (MPI Leipzig)
- Boris N. Khoromskij (MPI Leipzig)
- Wolfgang Hackbusch (MPI Leipzig)

DFG Priority Program:

Modern and Universal First-Principle-Methods for Many-Electron Systems in Chemistry and Physics

Outline of the talk

- Multiresolution analysis in a nutshell.
- Best *N*-term approximation of pair-correlation functions.
 - 1. Cusp conditions.
 - 2. RPA Jastrow factor.
 - 3. Wavelets versus GTO bases.
- Fast computation of two-electron integrals via tensor products.
 - 1. Density-fitting scheme using tensor product approximation.
 - 2. Tensor product quadrature for Coulomb potential.
 - 3. Wavelet compression of univariate components.

Wavelet multiresolution analysis in $L^2(\mathbb{R})$

Decomposition of $L^2(\mathbb{R})$ into a nested sequence of subspaces

$$L^{2}(\mathbb{R}) = \text{closure}\left(\bigcup_{l\in\mathbb{Z}}V_{l}\right) \quad \cdots \subset V_{j-1} \subset V_{j} \subset V_{j+1} \subset \cdots$$

Scaling functions $\{\varphi_{j,k}\}_{k\in\mathbb{Z}}$ provide a (bi)orthogonal basis in V_j .

Wavelets $\{\psi_{j,k}\}_{k\in\mathbb{Z}}$ span complement W_j of V_j , i.e., $V_{j+1} = W_j \oplus V_j$

Multiscale decomposition: $L^2(\mathbb{R}) = V_{l_0} \bigoplus_{l \ge l_0} W_l$

Scaling functions and wavelets are constructed via dilation and translation

$$\varphi_{j,k}(x) := 2^{j/2} \varphi(2^j x - k), \quad \psi_{j,k}(x) := 2^{j/2} \psi(2^j x - k), \quad j,k \in \mathbb{Z}$$

Refinement relations: $\varphi(x) = 2\sum_{a} h_a \varphi(2x - a), \quad \psi(x) = 2\sum_{b} g_k \varphi(2x - k)$

Any function f in $L^2(\mathbb{R})$ can be expanded in an orthogonal wavelet basis

$$f(x) = \underbrace{\sum_{a} \langle \varphi_{l_0,a} | f \rangle \varphi_{l_0,a}(x)}_{V_{l_0}} + \underbrace{\sum_{j=l_0}^{\infty} \sum_{a} \langle \psi_{j,a} | f \rangle \psi_{j,a}(x)}_{\bigoplus_{l_0 \le j} W_j},$$

Norm equivalences with Sobolev and more general Besov function spaces

$$\|f\|_{H^s}^2 \sim \sum_a \left| \langle \varphi_{l_0,a} | f \rangle \right|^2 + \sum_{j=l_0}^\infty 2^{2sj} \sum_a \left| \langle \psi_{j,a} | f \rangle \rangle \right|^2$$

Vanishing moments: $\int dx \, x^k \, \psi(x) = 0$, for $k = 0, \ldots, n-1$.

Estimates for wavelet coefficients from Taylor series

$$f(x) = c_0 + \dots + c_{n-1}(x - 2^{-j}a)^{n-1} + R_{n-1}(x)(x - 2^{-j}a)^n$$

$$\left|\langle\psi_{j,a}|f\rangle\right| \leq \|f^{(n)}\|_{L^{\infty}(\operatorname{supp}\psi_{j,a})}2^{-j(n+1/2)}\int dx \ |x^{n}\psi(x)|$$

Bounds on derivatives $f^{(n)}$ are important for approximation theory.

Tensor product wavelet bases in higher dimensions

Isotropic 3d-wavelets:

$$\gamma_{j,\mathbf{a}}^{(0)}(\mathbf{r}) = \varphi_{j,a_{x}}(x) \varphi_{j,a_{y}}(y) \varphi_{j,a_{z}}(z), \quad \text{(scaling functions)}$$

$$\gamma_{j,\mathbf{a}}^{(1)}(\mathbf{r}) = \psi_{j,a_{x}}(x) \varphi_{j,a_{y}}(y) \varphi_{j,a_{z}}(z), \quad \text{with} \quad n \text{ vanish. moments}$$

$$\vdots$$

$$\gamma_{j,\mathbf{a}}^{(4)}(\mathbf{r}) = \psi_{j,a_{x}}(x) \psi_{j,a_{y}}(y) \varphi_{j,a_{z}}(z), \quad \text{with} \quad 2n \text{ vanish. moments}$$

$$\vdots$$

$$\gamma_{j,\mathbf{a}}^{(7)}(\mathbf{r}) = \psi_{j,a_{x}}(x) \psi_{j,a_{y}}(y) \psi_{j,a_{z}}(z), \quad \text{with} \quad 3n \text{ vanish. moments}$$

Anisotropic 3d-wavelets: $\zeta_{\mathbf{j},\mathbf{a}}(\mathbf{r}) = \psi_{\mathbf{j}_x,a_x}(x) \psi_{\mathbf{j}_y,a_y}(y) \psi_{\mathbf{j}_z,a_z}(z)$

Anisotropic tensor product wavelets for many-particle wavefunctions

$$\zeta_{\mathbf{j},\mathbf{a}}(\mathbf{r}) = \gamma_{j_1,\mathbf{a}_1}^{(s_1)}(\mathbf{r}_1) \gamma_{j_2,\mathbf{a}_2}^{(s_2)}(\mathbf{r}_2) \dots \gamma_{j_p,\mathbf{a}_p}^{(s_p)}(\mathbf{r}_p)$$

Multiresolution analysis of pair-correlation functions

Jastrow factor ansatz: $\mathcal{F}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) \Phi$

$$\mathcal{F}(\mathbf{x}_1, ..., \mathbf{x}_N) = \exp\left(\sum_i \mathcal{F}^{(1)}(\mathbf{x}_i) + \sum_{i < j} \mathcal{F}^{(2)}(\mathbf{x}_i, \mathbf{x}_j) \cdots\right)$$

Pair functions from local ansatz or Jastrow-perturbation theory HJF, W. Hackbusch, H. Luo and D. Kolb, Phys. Rev. B **71**, 125115 (2005) H. Luo, D. Kolb, HJF and W. Hackbusch, Phys. Rev. B **75**, 125111 (2007)

Integro-differential MP2 equations for pair functions K. Szalewicz, B. Jeziorski, H. J. Monkhorst and J. G. Zabolitzky, J. Chem. Phys. **78**, 1420 (1983)

$$(\mathfrak{h}_{1} + \mathfrak{h}_{2} - \epsilon_{a} - \epsilon_{b}) \tau_{a,b}^{\pm}(\mathbf{x}_{1}, \mathbf{x}_{2}) = -Q \frac{1}{|\mathbf{x}_{1} - \mathbf{x}_{2}|} (\phi_{a}(\mathbf{x}_{1})\phi_{b}(\mathbf{x}_{2}) \pm \phi_{b}(\mathbf{x}_{1})\phi_{a}(\mathbf{x}_{2})),$$
$$Q\tau_{a,b}^{\pm}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \tau_{a,b}^{\pm}(\mathbf{x}_{1}, \mathbf{x}_{2}),$$
$$Q := (1 - p_{1})(1 - p_{2}), \text{ with } p := \sum_{i=1}^{N/2} |\phi_{i}\rangle\langle\phi_{i}|$$

Similar equations have been derived for CCD

B. Jeziorski, H. J. Monkhorst, K. Szalewicz, J. G. Zabolitzky, J. Chem. Phys. 81, 368 (1984)

Cusp conditions for best N-term approximation theory

• Asymptotic smoothness properties near cusps, i.e.

1.
$$|\partial_{\mathbf{x}}^{\beta}\phi_i(\mathbf{x})| \leq C_{\beta}|\mathbf{x} - \mathbf{A}|^{1-|\beta|}$$
 for $\mathbf{x} \neq \mathbf{A}$ and $|\beta| \geq 1$

- (a) HJF, W. Hackbusch and R. Schneider, ESAIM: M2AN 40, 49 (2006)
- (b) HJF, R. Schneider and B.-W. Schulze, preprint 2007.
- 2. $|\partial_{\mathbf{x}}^{\alpha}\partial_{\mathbf{y}}^{\beta}\mathcal{F}^{(2)}(\mathbf{x},\mathbf{y})| \leq c_{\alpha,\beta} |\mathbf{x}-\mathbf{y}|^{1-|\alpha|-|\beta|}$, for $\mathbf{x} \neq \mathbf{y}$ and $|\alpha|+|\beta| \geq 1$

Kato's cusp condition

 \mathbf{O}

- 1. T. Kato, Commun. Pure Appl. Math. 10, 151-177 (1957).
- 2. M. Hoffmann-Ostenhof and R. Seiler, Phys. Rev. A 23, 21-23 (1981).
- 3. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and H. Stremnitzer, Commun. Math. Phys. **163**, 185-215 (1994).
- 4. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard Sørensen, Commun. Math. Phys. **255**, 183-227 (2005).
- Sobolev spaces with mixed partial derivatives
 - 1. H. Yserentant, Numer. Math. 98, 731-759 (2004); ibid. 101, 381-389 (2005).
 - 2. M. Griebel and J. Hamaekers ESAIM: M2AN 41, 215-248 (2007).

RPA Jastrow factor for a homogeneous electron gas

Fourier representation:
$$\hat{\mathcal{F}}(k) = \frac{1}{2\rho S_F} \left[1 - \left(1 + \frac{4\rho \hat{v} S_F^2}{k^2} \right)^{\frac{1}{2}} \right]$$

Static structure factor: $S_F(k) = \begin{cases} \frac{3}{4}\frac{k}{k_F} - \frac{1}{16}\left(\frac{k}{k_F}\right)^3, & k < 2k_F \\ 1, & k \ge 2k_F \end{cases}$

- Exact description of long-range correlations in metals.
- Accurate correlation energies in variational Monte Carlo calculations.
- Discontinuity of $\widehat{\mathcal{F}}''(k)$ at $k = 2k_F$.

Payley-Littlewood decompostion

Partition of unity: $1 = \eta(k) + \sum_{j=1}^{\infty} \delta(2^{-j}k)$

$$\eta(k) = \begin{cases} 1, & k < \epsilon < 2k_F \\ 0, & k \ge \epsilon \end{cases}, \delta(k) := \eta(k) - \eta(2k)$$

$$S_0 \mathcal{F}(r) := \frac{1}{(2\pi)^3} \int d^3k \, e^{i\mathbf{k}\mathbf{r}} \eta(k) \widehat{\mathcal{F}}(k), \ \Delta_j \mathcal{F}(r) := \frac{1}{(2\pi)^3} \int d^3k \, e^{i\mathbf{k}\mathbf{r}} \delta(2^{-j}k) \widehat{\mathcal{F}}(k)$$

$$\mathcal{F}(r) = S_0 \mathcal{F}(r) + \sum_{j=0}^{\infty} \Delta_j \mathcal{F}(r)$$

Long-range correlations

Asymptotic expansion: $S_0 \mathcal{F}(r) \sim \frac{\tilde{a}_0}{r} + \sum_{j=0}^{\infty} \tilde{a}_{2j+1} r^{-2j-2}$

"Asymptotic smoothness property" at large inter-electron distances $\left|\partial_{\mathbf{r}_1}^{\alpha}\partial_{\mathbf{r}_2}^{\beta}S_0\mathcal{F}(|\mathbf{r}_1-\mathbf{r}_2|)\right| \leq C_{\alpha,\beta}\left(1+|\mathbf{r}_1-\mathbf{r}_2|\right)^{-(1+|\alpha|+|\beta|)}$

Short-range correlations

Short-range Jastrow factor: $\mathcal{F}_s(r) = \sum_{j=n}^{\infty} \Delta_j \mathcal{F}(r)$

Symbol of ΨDO : $\partial_{\mathbf{k}}^{\alpha} \widehat{\mathcal{F}}_{s}(k) \leq C_{\alpha} (1+k)^{-4-|\alpha|} \Longrightarrow \widehat{\mathcal{F}}_{s} \in S^{-4}$

Asymptotic smoothness property:

$$\partial_{\mathbf{r}_1}^{\alpha} \partial_{\mathbf{r}_2}^{\beta} \mathcal{F}_s(|\mathbf{r}_1 - \mathbf{r}_2|) \leq C_{\alpha,\beta} |\mathbf{r}_1 - \mathbf{r}_2|^{1-|\alpha|-|\beta|-N}$$

for any $N \in \mathbb{N}$ mit $|\alpha| + |\beta| + N > 1$

Discontinuity of second derivatives

$$\Delta_j \mathcal{F}(r) \sim o\left(\frac{1}{r^2}\right)$$
 for $2k_F \in \operatorname{supp} \delta(2^{-j}k)$

Best N-Term Approximation for Anisotropic Wavelet Bases

Nonlinear submanifold Σ_N of linear vector space spanned by $\{\zeta_i : i \in \Lambda\}$

$$\Sigma_N := \left\{ \sum_{i \in \Delta} c_i \zeta_i : \Delta \subset \Lambda, \# \Delta \le N \right\}$$

Approximation error for $f \in H^1(\Omega)$: $\sigma_N(f) := \inf_{f_N \in \Sigma_N} \|f - f_N\|_{H^1}$

Convergence rate: $\sigma_N(f) \sim N^{-\alpha}$ for $f \in \mathcal{B}_q^{\alpha}(\Omega)$ (approximation space)

Norm equivalences for tensor product Besov spaces

$$\|f\|_{\mathcal{B}^{\alpha}_{q}(\Omega)}^{q} = \sum_{\mathbf{j}} 2^{\max\{j_{i}\}q} \left(\sum_{\mathbf{a}} \left| \langle \zeta_{\mathbf{j},\mathbf{a}} | f \rangle \right|^{q} \right) \quad \text{with } \frac{1}{q} = \alpha + \frac{1}{2}$$

(i) $\psi_{j,a} \in B_q^{\beta}(L_q)$ for some $\beta > 3\alpha$

(ii) $\psi_{j,a}$ has p vanishing moments with $p > 3\alpha + 1$.

Application to pair-correlation functions

HJF, W. Hackbusch and R. Schneider, ESAIM: M2AN 41, 261 (2007)

Pair functions with inter-electron and electron-nuclear cusps.

Assumption 1. The two-particle correlation function $\mathcal{F}^{(2)}$ belongs to $C^{\infty}(\mathbb{R}^3 \times \mathbb{R}^3 \setminus D)$, with $D := \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3 : \mathbf{x} = \mathbf{y}\}.$

Furthermore it satisfies the asymptotic smoothness property

 $|\partial_{\mathbf{x}}^{\alpha}\partial_{\mathbf{y}}^{\beta}\mathcal{F}^{(2)}(\mathbf{x},\mathbf{y})| \leq c_{\alpha,\beta} |\mathbf{x}-\mathbf{y}|^{1-|\alpha|-|\beta|}$, for $\mathbf{x} \neq \mathbf{y}$ and $|\alpha|+|\beta| \geq 1$,

in any bounded neighbourhood $\Omega \times \Omega \subset \mathbb{R}^3 \times \mathbb{R}^3$.

Lemma 1. Suppose $\mathcal{F}^{(2)}$ satisfies Assumption 1. Then \mathcal{F} belongs to $\mathcal{B}_q^{\alpha}(H^1(\Omega \times \Omega))$ for $\alpha < \frac{1}{2}$ and $\frac{1}{q} = \alpha + \frac{1}{2}$.

Assumption 2. The two-particle correlation function $\mathcal{F}^{(2)}$ belongs to $C^{\infty}(\mathbb{R}^3 \times \mathbb{R}^3 \setminus (D \cup N))$, with $D := \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3 : \mathbf{x} = \mathbf{y}\}$ and $N := \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3 : \mathbf{x} = \mathbf{A} \lor \mathbf{y} = \mathbf{A}\}.$

Furthermore it satisfies the generalized asymptotic smoothness property

$$\begin{aligned} |\partial_{\mathbf{x}}^{\alpha}\partial_{\mathbf{y}}^{\beta}\mathcal{F}^{(2)}(\mathbf{x},\mathbf{y})| &\leq c_{\alpha,\beta} \sup_{\alpha_{1},\beta_{1}} \left(\delta_{|\alpha_{1}|} + |\mathbf{x}-\mathbf{A}|^{1-|\alpha_{1}|}\right) \left(\delta_{|\beta_{1}|} + |\mathbf{y}-\mathbf{A}|^{1-|\beta_{1}|}\right) \\ &\times \left(\delta_{(|\alpha_{2}|+|\beta_{2}|)} + |\mathbf{x}-\mathbf{y}|^{1-|\alpha|_{2}-|\beta|_{2}}\right), \end{aligned}$$

for $(\mathbf{x}, \mathbf{y}) \notin D \cup N$, $|\alpha| + |\beta| > 1$ and $\alpha_1 + \alpha_2 = \alpha$, $\beta_1 + \beta_2 = \beta$, in a bounded neighbourhood $\Omega \times \Omega \subset \mathbb{R}^3 \times \mathbb{R}^3$ of the nucleus **A**.

• QMC Jastrow factors: $\mathcal{F}^{(2)}(\mathbf{x}, \mathbf{y}) = \sum_{l,m,n} c_{lmn} |\mathbf{x} - \mathbf{y}|^l |\mathbf{x} - \mathbf{A}|^m |\mathbf{y} - \mathbf{A}|^n$

Lemma 2. Suppose $\mathcal{F}^{(2)}$ satisfies Assumption 2. Then \mathcal{F} belongs to $\mathcal{B}_q^{\alpha}(H^1(\Omega \times \Omega))$ for $\alpha < \frac{1}{2}$ and $\frac{1}{q} = \alpha + \frac{1}{2}$.

Best *N*-term approximation versus GTO bases

Best N-term approximation

• Wavelet approximation of pair-correlation functions:

$$- \parallel \mathcal{F}^{(2)} - \mathcal{F}^{(2)}_N \parallel_{H^1} \leq CN^{-\frac{1}{2} + \epsilon} \text{ for any } \epsilon > 0$$

 $-O(N^{-1+\epsilon})$ convergence of the energy.

GTO *VXZ* (X = 2, 3, 4, ...) bases:

A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A.K. Wilson, Chem. Phys. Lett. 286, 243 (1998)

• Post HF methods (CISD, CCSD, etc.)

 $-O(X^{-3})$ convergence of the energy with $O(X^{6})$ degrees of freedom.

 $-O(N^{-\frac{1}{2}})$ convergence of the energy.

Computation of two-electron integrals in JPT

Basic two-electron integrals for first-order pair-correlation function

- Diagram 2 provides additional sparsity due to vanishing moments.
- Best N-term approximation yields $N \sim O(M \log M)$ (sparse grids).
- Adaptive methods scale "almost" linear with respect to N.

A. Cohen, W. Dahmen and R.A. DeVore, Math. Comp. 70, 27 (2001)

Density-fitting scheme using tensor product approximation

S.R. Chinnamsetty, M. Espig, B.N. Khoromskij, W. Hackbusch, HJF, J. Chem. Phys. 127, 084110 (2007)

$$\int d^3x d^3y \,\eta_{\alpha}(\mathbf{x}) \,\frac{1}{|\mathbf{x} - \mathbf{y}|} \,\eta_{\beta}(\mathbf{y}) \quad \text{with } \eta(\mathbf{x}) = \begin{cases} \phi_i(\mathbf{x})\phi_j(\mathbf{x}) \\ \phi_i(\mathbf{x})\phi_j(\mathbf{x})\gamma_{\alpha}(\mathbf{x}) \\ \phi_i(\mathbf{x})\phi_j(\mathbf{x})\gamma_{\alpha}(\mathbf{x})\gamma_{\beta}(\mathbf{x}). \end{cases}$$

Best separable rank κ approximation

$$\eta(\mathbf{x}) \approx \sum_{k=1}^{\kappa} \eta_k^{(1)}(x_1) \, \eta_k^{(2)}(x_2) \, \eta_k^{(3)}(x_3)$$

Newton algorithm (M. Espig) for least-squares problem in $L^2(\mathbb{R}^3)$

$$\sigma_{\kappa}(f) := \inf_{\eta_k^{(i)} \in L^2(\mathbb{R})} \left\| \eta(\mathbf{x}) - \sum_{k=1}^{\kappa} \eta_k^{(1)}(x_1) \eta_k^{(2)}(x_2) \eta_k^{(3)}(x_3) \right\|_{L^2(\mathbb{R}^3)}$$

Computational complexity: Assumption $\kappa \ll K$

- (1) Initial orthogonalization step: $O(n_l K^2)$ (QR decomposition).
- (2) Newton algorithm: $O(\kappa K r_{max} + \kappa^3)$ with memory $O(\kappa r_{max})$.

Tensor product quadrature for Coulomb potential

$$\int \gamma_{j,\mathbf{a}}^{(\mathbf{p})}(\mathbf{x}) \frac{1}{|\mathbf{x} - \mathbf{y}|} \gamma_{j,\mathbf{b}}^{(\mathbf{q})}(\mathbf{y}) d\mathbf{x} d\mathbf{y} = \frac{2^{-2j+1}}{\sqrt{\pi}} \int_{0}^{\infty} \mathcal{I}^{(\mathbf{p},\mathbf{q})}(t,\mathbf{a}-\mathbf{b}) dt$$
$$\mathcal{I}^{(\mathbf{p},\mathbf{q})}(t,\mathbf{a}) = G^{(p_{1},q_{1})}(a_{1},t) G^{(p_{2},q_{2})}(a_{2},t) G^{(p_{3},q_{3})}(a_{3},t)$$
$$G^{(p,q)}(a,t) = \int \int \psi^{(p)}(x-a) e^{-(x-y)^{2}t^{2}} \psi^{(q)}(y) dx dy$$
$$\psi_{j,a}^{(0)}(x) := \varphi_{j,a}(x), \ \psi_{j,a}^{(1)}(x) := \psi_{j,a}(x)$$

Exponential quadrature rule with uniformly bounded integration error

$$\left|\int_0^\infty \mathcal{I}^{(\mathbf{p},\mathbf{q})}(t,\mathbf{a})dt - h\sum_{m=-M}^M e^{mh}\mathcal{I}^{(\mathbf{p},\mathbf{q})}(e^{mh},\mathbf{a})\right| \lesssim e^{-\alpha\sqrt{M}}$$

with $\alpha = 2\sqrt{\pi\delta}$ ($\alpha = \sqrt{2\pi\delta}$) for any $\delta < \frac{\pi}{4}$ and $h = \sqrt{\frac{\pi\delta}{M}}$ ($h = \sqrt{\frac{2\pi\delta}{M}}$) S. Schwinger, Diploma thesis MPI Leipzig 05

Biorthogonal wavelet basis (6 vanishing moments)

Fast computation of Coulomb integrals via tensor products

$$\iint \eta_{\alpha}(\mathbf{x}) \frac{1}{|\mathbf{x} - \mathbf{y}|} \eta_{\beta}(\mathbf{y}) \, d\mathbf{x} \, d\mathbf{y} \approx \sum_{j} 2^{-2j} \sum_{\mathbf{p}, \mathbf{q}}' \sum_{m=-M}^{M} \omega_{m} \prod_{i=1}^{3} L_{j, p_{i}, q_{i}}^{(i)}(t_{m})$$

$$L_{j,p_i,q_i}^{(i)}(t_m) = \sum_{a_i,b_i} \langle \eta_\alpha^{(i)} | \tilde{\psi}_{j,a_i+b_i}^{(p_i)} \rangle \langle \tilde{\psi}_{j,b_i}^{(q_i)} | \eta_\beta^{(i)} \rangle G^{(p_i,q_i)}(a_i,t_m)$$

Alternative approach: Intermediate compression step

$$\int \frac{1}{|\mathbf{x} - \mathbf{y}|} \eta_{\beta}(\mathbf{y}) d\mathbf{y} \approx \sum_{j=j_{0}}^{j_{max}} \sum_{k=1}^{\kappa_{j,\beta}} v_{k,j,\beta}^{(1)}(x_{1}) v_{k,j,\beta}^{(2)}(x_{2}) v_{k,j,\beta}^{(3)}(x_{3})$$
$$\approx \sum_{k=1}^{\kappa_{\beta}} w_{k,\beta}^{(1)}(x_{1}) w_{k,\beta}^{(2)}(x_{2}) w_{k,\beta}^{(3)}(x_{3})$$

Assembling of two-electron integrals

$$\int \int \eta_{\alpha}(\mathbf{x}) \frac{1}{|\mathbf{x} - \mathbf{y}|} \eta_{\beta}(\mathbf{y}) d\mathbf{x} d\mathbf{y} = \sum_{k=1}^{\kappa_{\alpha}} \sum_{l=1}^{\kappa_{\beta}} \langle \eta_{k,\alpha}^{(1)} | w_{l,\beta}^{(1)} \rangle \langle \eta_{k,\alpha}^{(2)} | w_{l,\beta}^{(2)} \rangle \langle \eta_{k,\alpha}^{(3)} | w_{l,\beta}^{(3)} \rangle$$

Error in HF energy (mhartree) for best separable approximations of the electron density (κ) and Hartree potential (κ').

	κ	$E^a_\kappa - E_{GTO}$	$L_{ ho}^2$	κ'	$E_{\kappa'}^c - E_{GTO}$	$L_{V_H}^2$
CH ₄	20	-0.57	$8.1 \cdot 10^{-5}$	10	-39.50	$6.2 \cdot 10^{-4}$
				15	-1.40	$1.3 \cdot 10^{-4}$
				20	-0.63	$5.3 \cdot 10^{-5}$
	35	-0.09	$1.9 \cdot 10^{-5}$	10	-39.07	$6.2 \cdot 10^{-4}$
				15	-0.93	$1.3 \cdot 10^{-4}$
				20	-0.16	$3.9 \cdot 10^{-5}$
C_2H_2	35	-2.41	$2.1 \cdot 10^{-4}$	30	-10.00	$1.8 \cdot 10^{-4}$
				40	-0.84	$6.4 \cdot 10^{-5}$
	40	-0.95	$1.8 \cdot 10^{-4}$	30	-4.35	$1.7 \cdot 10^{-4}$
				40	0.97	$5.3 \cdot 10^{-5}$
	50	-0.50	$1.3 \cdot 10^{-4}$			
C_2H_6	30	-11.14	$3.0 \cdot 10^{-4}$	30	-9.57	$4.5 \cdot 10^{-5}$
	40	-0.68	$1.2 \cdot 10^{-4}$	40	-0.98	$1.6 \cdot 10^{-5}$
				50	-0.95	$7.5 \cdot 10^{-6}$
				60	-0.58	$3.3 \cdot 10^{-6}$

 a HF energy with best separable rank κ approximation of electron density.

^c HF energy with subsequent compression of the Hartree potential to rank κ' .

Wavelet compression of univariate components

J. M. Ford and E. Tyrtyshnikov, SIAM J. Sci. Comput. 25, 961 (2003)

Wavelet compression using Daubechies wavelets (p = 5)

- a) Electron density of C_2H_6 at rank $\kappa = 5$.
- b) Hartree potential of C_2H_6 at rank $\kappa' = 5$.

Conclusions and outlook

- Wavelet based multiresolution analysis of electron correlations
 - 1. Approximation of pair-correlation functions.
 - 2. Adaptive treatment of electron correlations.
 - 3. Convergence in energy $O(N^{-1+\epsilon})$ versus $O(N^{-1/2})$ (GTO basis).
 - 4. Computation of two-electron integrals with O(N) complexity.
- Future work
 - 1. Wavelet implementation of JPT2 method. (Honjun Luo's talk)
 - 2. Tensor product approximation of electron correlations.