Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook

Implementation of the incremental scheme and application to CCSD energies

Joachim Friedrich

Institute for Theoretical Chemistry University of Cologne Greinstr. 4, 50939 Cologne, Germany

14.09.07

・ロト ・四ト ・モト・モー

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Outline	:				

- **2** Screening Procedures
- 3 Error Propagation

Method

Applications

 $\phi_4 \phi_2$

(日)

 D_3

 D_1

The Incremental Scheme (A General Local Correlation Approach)

- Introduced by Nesbet (1967) and Stoll (1992)
- Solve the Hartree-Fock problem
- Divide the system into localized orbital domains ٩
- Calculate the correlation energies for single domains, pairs. ... up to a given order
- Expand t

d the correlation energy as

$$E_{corr} = \sum_{i} \Delta \varepsilon_{i} + \frac{1}{2!} \sum_{ij} \Delta \varepsilon_{ij} + \frac{1}{3!} \sum_{ijk} \Delta \varepsilon_{ijk} + \dots$$

$$\Delta \varepsilon_i = \varepsilon_i \qquad \Delta \varepsilon_{ij} = \varepsilon_{ij} - \Delta \varepsilon_i - \Delta \varepsilon_j$$

 $\Delta \varepsilon_{iik} = \varepsilon_{iik} - \Delta \varepsilon_{ii} - \Delta \varepsilon_{ik} - \Delta \varepsilon_{ik} - \Delta \varepsilon_{i} - \Delta \varepsilon_{i} - \Delta \varepsilon_{i}$

- Construct the centers of charge according to the dipole integrals in AO-basis
- Construct the connectivity matrix C

$$C_{ij} = egin{cases} 10^8, & ext{if } D_{ij} \ \leq t_{con} \wedge rac{q}{D_{ij}} \geq 10^8 \ rac{q}{D_{ij}}, & ext{if } D_{ij} \ \leq t_{con} \wedge rac{q}{D_{ij}} < 10^8 \ 0, & ext{if } D_{ij} \ > t_{con} \end{cases}$$

- Use METIS-Graphpartitioning to divide the set of orbitals into disjoint subsets
- Generate all necessary orbital sets for higher order terms

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Domai	ns for Naphtal	len			

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Energy	Screening ¹				

• If the energy of an increment is lower than a given threshold, we can neglect it in the summation

$$egin{aligned} \mathcal{E}_{\mathsf{corr}} = & \sum_{\mathbb{X}} \Delta arepsilon_{\mathbb{X}} \ & \mathbb{X} \in \mathcal{P}(\mathbb{D}) \ & |\mathbb{X}| \leq \mathcal{O} \wedge |\Delta \widetilde{arepsilon}_{\mathbb{X}}| > E_{thres} \end{aligned}$$

- The goal is to obtain $\Delta \tilde{\varepsilon}_X$ before the increment $\Delta \varepsilon_X$ is explicitly calculated
- Low level correlation methods (MP2)
- Small basis set calculations

¹J. Friedrich, M. Hanrath, M. Dolg, J. Chem. Phys. **126**, 154110 (2007).

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Distanc	ce Screening ²				

 If two parts of a given *n*-site domain are far apart, we can neglect the incremental energy (eg.: ε_{ij} ≈ ε_i + ε_j)

Outlook

Contribution of Low Order Summations

$$p_{s,t} = egin{pmatrix} (|\mathbb{D}|-t)\ (s-t) \end{pmatrix}$$
 with $s>t$

$$F(s,t) = -\sum_{i=t}^{s-1} p_{s,i} \cdot F(i,t)$$

$$F(t,t)=1$$

-

All possibilities to include the 1st order summation in the 5th order summation

Example:

$$F(5,2) = (-p_{5,2}) + (-p_{5,3}) \cdot (-p_{3,2}) + (-p_{5,4}) \cdot [(-p_{4,2}) + (-p_{4,3}) \cdot (-p_{3,2})]$$

 Adapt convergence thresholds according to the desired accuracy

• Limited accuracy of the correlation calculations

 $arepsilon_{\mathbb{X}} = X \cdot 10^{-6}$ $arepsilon_{\mathbb{X}} = X \cdot 10^{-10} \cdot 10^{\mathcal{O}}$

 Results based on 2000 sets of uniformly distributed random numbers X

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Examp	le: DNA Base	e-Pair I			

• RI-BP86/SVP optimized structure of the guanine-cytosine base pair.

・ロト ・部ト ・モト ・モト

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlool

Example: DNA Base-Pair II

order <i>i</i>	i-th order correction	$E_{corr}(i)$	error	% E _{corr}
	[au]	[au]	[kcal/mol]	
1	-1.916622	-1.916622	592.65	66.99
2	-0.979382	-2.896004	-21.92	101.22
3	0.031816	-2.864189	-1.96	100.11
4	0.002382	-2.861807	-0.46	100.03
exact CCSD		-2.861067		

- Comparison of the incremental energies with the full CCSD/6-31G** calculations for the guanine-cytosine dimer. (dsp=3, 16 domains, core=19)
- The canonical CCSD calculation is already impossible on a Pentium IV (1.35 GB RAM) PC
- 421 of 2516 CCSD calculations where necessary for $t_{dist} = \frac{16}{O_c}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Performance of the Incremental Scheme I

		Naphtali	ne
φ φ	order	error	$\% E_{corr}$
	1	278.87	67.11
	2	-10.65	101.26
	3	-0.14	100.02
	4	0.15	99.98
		Alkyne	
	order	error	$\% E_{corr}$
	1	395.63	68.93
	2	-12.28	100.96
	3	-0.52	100.04
		0.04	100.00
	4	-0.04	100.00

• Errors with respect to the exact CCSD calculation [kcal/mol]

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Alkyne					

energy threshold	E _{corr}	error	n calc
[au]	[au]	[kcal/mol]	
total number of c	alculations		561
10^{-8}	-2.029578	-0.04	555
10^{-7}	-2.029578	-0.04	506
10^{-6}	-2.029565	-0.03	299
10^{-5}	-2.029656	-0.09	135
10^{-4}	-2.030857	-0.85	71

• Simulated energy screening

・ロト ・四ト ・ヨト ・ヨト

Performance of the Incremental Scheme II

<u>a</u>		$(H_2O)_1$.1
┢┻╴┇╴┇╴╗	order	error	⁶ % E _{corr}
° · · · · · · · · · · · · · · · · · · ·	1	33.35	97.68
	2	0.18	99.99
	3	0.01	100.00
	4	0.00	100.00

	$Au_2(PH-C_2H_2-S)_2$			
_	order	error	$\% E_{corr}$	
	1	317.17	64.14	
	2	-30.13	103.41	
	3	1.98	99.78	
	4	-0.07	100.01	

• Errors with respect to the exact CCSD calculation [kcal/mol]

(日)

Performance of the Incremental Scheme III

X	, 200
	-

TiCp ₂ Cl ₂				
order	error	$\% E_{corr}$		
1	305.25	73.66		
2	-34.64	102.99		
3	7.60	99.34		
4	0.08	99.99		

	Hg_{20}	
order	error	$\% E_{corr}$
1	88.00	78.02
2	-6.03	101.51
3	0.32	99.92
4	-0.03	100.01

• Errors with respect to the exact CCSD calculation [kcal/mol]

 Method
 Screening Procedures
 Error Propagation
 Applications
 Conclusions
 Outlook

 Potential Energy Surfaces I³
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

- DFT (RI-BP86/SVP) relaxed scan along the C4-C5-bond
- Incremental CCSD/6-31G** energy

³J. Friedrich, M. Hanrath, M. Dolg, Chem. Phys. **338**, 33 (2007).

・ロト ・聞ト ・ヨト ・ヨト

ns Conclusions

Outlook

Potential Energy Surfaces II

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Conclus	sions				

- Fully automatized implementation to arbitrary order
- Chemical accuracy for a wide variety of systems
- Truncation at low order possible
- The CCSD correlation energy can be obtained in a parallel manner
- The number of calculations can be reduced by distance or energy thresholds
- Costly higher order increments require a lower accuracy then cheaper low order ones
- Disk space and RAM requirements are reduced

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Outloo	k				

- Use different correlation methods within the framework of the incremental scheme (CC2, CCSD(T), CCSDT)
- Extend the incremental expansion to molecular properties
- Interface to a periodic Hartree-Fock code (WANNIER)
- Formulation and Implementation of energy-difference dedicated and spatially restricted incremental expansions
- Account for the core and core-valence correlation in an efficient way
- Implement a gradient
- Design of a CCSD code adapted to the Incremental Scheme (in order to obtain a linear scaling method)

Method	Screening Procedures	Error Propagation	Applications	Conclusions	Outlook
Acknow	wledgments				

- Financial support of the German Science Foundation (DFG) through the priority programme 1145 is gratefully acknowledged.
- Prof. M. Dolg and Dr. M. Hanrath for supervision

Thank you for attention!

