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The correlation hole of an electron



- Coulomb repulsion: keeps eletrons apart

- kinetic energy:   wants to have them moving as freely as possible

compromise depending on relative strengths of the two

• electron gas:  

extreme cases:   high density d → 0             Ekin » Ecoul

low density d →∞ Ecoul » Ekin

Wigner crystal
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Two competing effects on electron motion
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basic problem: description of the correlation hole

pair-distribution fct.

due to Pauli principle already structure in HF

for large r

small r
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screening of the long-range Coulomb interactions

plasma oscillations must include zero-point motion of plasmons in

Fourier transf.

1-st quantized form

inhomogen. system

has been applied to semiconductors (S. Louie et al.)
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Short-range correlations

distinction between interatomic and intra-atomic correlations

1)  interatomic correlations

reduce charge fluctuations on a given site compared with SCF

extreme case:    Gd3+ 4f7 no 4f6 or 4f8

not so extreme:

Ce3+ :   4f1 and small part 4f0

singlet Kondo effect
C atom in C2H2
correlat. strength



when applied to bonds

van der Waals interactions

2)  intra-atmic correlations

Hund‘s rule correl., in case of 4f shell J = L – S  for fn n < 7

e.g.,  Pr3+ 4f2 J = 4

but also important in paramagn. Fe, even in C in C2H2
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starting point:   SCF calculations, e.g.,    CRYSTAL  or WANNIER

choice of basis set of GTO‘s

optimal description:    construct (nonorthog.)  wavelets from basis set

different coarse graining

introduce operator                 referring to wavelet i

reduce (or enhance) 
configurations
(Stollhoff + P.F., '80)

advantage:  reduce number of configur. to be corrected to a minimum

applicable also to metals

disadvantage:  nonorthogonality of wavelets
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Description of the correlation hole
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alternative: use orthogonal destruction operators in 

Hres = H – HSCF , localized occupied SCF orbitals

Wannier (or Foster-Boys) centered at atoms 

i and j and create electrons in (non-orthog.) virtual 

orbitals (atomic like orbitals) “near” sites 

i and j  (P. Pulay '83, H.-J. Werner and M. Schütz '95)

advantage: much simpler to implement, e.g., into MOLPRO

disadvantage: not a priori applicable to metals like Na 
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i j 'c ,cσ σ
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How to apply this to solids?

(a) size extensivity:   applying perturb. theory (Moeller-Plesset) 

not a problem

going beyond (e.g., CI or variational)              problem

solution: use exponent. form eS,  e.g., coupled cluster method

like Jastrow factor

much more elegant:     use cumulants need not use exponent. form

(b) method of increments (H. Stoll '92)

like Bethe-Goldstone cluster expansion
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achievements:

many-body wavefunction for ground state of many insulators and semicond.

recently also some metals, lattice constants, binding energies, bulk moduli

(see, e.g., review B. Paulus, including early work of Kiel et al., Horsch et al., 

more recent:  Dolg, Doll, Rosciszewski, Birkenheuer et al.)

at present:            improved new attempt by R. Bartlett, V. Staemmler,

G. Scuseria, C. Pisani and M. Schütz et al.

open problem:  strongly correlated systems with d and f electrons

MC-SCF as starting point

room for much work
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Correlation holes of excited states

relevant for energy bands

example semiconductors:  add an electron               long ranged polarization

cloud but also relaxation and loss of ground-state 

correlations

different to van der Waals correlations

in ground state

(reason for failure of LDA to describe energy gap)

quasiparticle:   electron (hole) + correl. hole

move together though system in form of 

Bloch wave
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example:    hole state SCF:

wave operator Ω:

scatter. matrix S:

contains 1- and 2-particle excitations

applications: keep hole state frozen and do new SCF calculation

relaxat. + polarizat.;  for long-range part

use ε (diel. const.)
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similar procedure for conduction band

recent example:   MgO (L. Hozoi et al.) ,  TZ basis set

SCF:       gap 16.2 eV

includ. correl. 8.1 eV (somewhat fortuitous)

experiment 7.9 eV

LDA           5.0 eV

large contribut. from on-site and n.n.-site relaxation

surprise: width of valence band increases due to correlat.
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Green's function:

quasiparticle representation:

from excitations involving internal degrees of freedom

of the correlation hole  (think of drum head)

- can be strongly damped

- simplest example:   satellite peaks in PEs
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413Formalism:

retard. Green fct.

notation:

choose most important operators which
generate the correlation hole:

Green‘s function matrix:

with:
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choice of { }Aν
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Results for paramagnetic Ni

reduction of bandwidth

nd=9.4

full spectrum

eg t2g

U  = 0.56
J   = 0.22
ΔJ = 0.031

HF result

J = ΔJ = 0

J = 0.22

full spectr.
but with
Ω = 1

(1)            (3)
(2)

(1)  1S
(2)  1G; 1D
(3)  3P; 3F

(Unger, Igarashi)
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breakdown of the quasiparticle picture

one-dimensional systems:            spin-charge separation

Luttinger liquid instead of Fermi liquid

fractional Quantum-Hall effect:   excitations with fractional charges

strong coupling limit due to a high

magnetic field

electrons on frustrated lattices:     fractional charges at special filling

factors in the strong correlation limit, even

in 3 dimensions
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kagomé lattice
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add now a particle ΔE = 2V

charge e charge e e,
2 2

correlation hole has fallen apart.

if there is a weak restoring force                correlation hole is very extended


