International workshop on

Local Correlation Methods: from Molecules to Crystals

Dresden, Sept. 12-15, 2007

The correlation hole of an electron

Two competing effects on electron motion

- Coulomb repulsion: keeps eletrons apart
- kinetic energy:
wants to have them moving as freely as possible
$n \longrightarrow$ compromise depending on relative strengths of the two

basic problem: description of the correlation hole
pair-distribution fct. $\quad \mathrm{g}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}\left\langle\psi_{0}\right| \sum_{\mathrm{i} \neq \mathrm{j}} \delta\left(\mathbf{r}-\mathbf{r}_{\mathrm{i}}\right) \delta\left(\mathbf{r}^{\prime}-\mathbf{r}_{\mathrm{j}}\right)\left|\psi_{0}\right\rangle$
due to Pauli principle
\Perp already structure in HF

$$
\mathrm{g}_{\mathrm{HF}}(\mathbf{r})=1-\frac{9}{2}\left(\frac{\sin \mathrm{k}_{\mathrm{F}} \mathrm{r}-\mathrm{k}_{\mathrm{F}} \mathrm{r} \cos \mathrm{k}_{\mathrm{F}} \mathrm{r}}{\left(\mathrm{k}_{\mathrm{F}} \mathrm{r}\right)^{3}}\right)^{2}
$$

for large $\mathrm{r} \longrightarrow \mathrm{g}_{\mathrm{HF}}(\mathbf{r}) \rightarrow 1-\frac{\alpha \cdot \cos ^{2} \mathrm{k}_{\mathrm{F}} \mathrm{r}}{\left(\mathrm{k}_{\mathrm{F}} \mathrm{r}\right)^{4}}$
small r

$$
\mathrm{g}(\mathbf{r})<\mathrm{g}_{\mathrm{HF}}(\mathbf{r})
$$

screening of the long-range Coulomb interactions
$\xrightarrow{\longrightarrow}$ plasma oscillations must include zero-point motion of plasmons in $\left|\psi_{0}\right\rangle$

$$
\left|\psi_{0}\right\rangle=\mathrm{e}^{\Sigma_{\mathrm{q}} \tau_{q} \rho_{\mathrm{q}}^{+} \rho_{\mathrm{q}}}\left|\Phi_{\mathrm{SCF}}\right\rangle \quad \text { RPA }
$$

$$
\rho_{\mathbf{q}}=\sum_{\mathbf{p} \sigma} \mathrm{c}_{\mathbf{p}-\mathbf{q} \sigma}^{+} \mathbf{c}_{\mathbf{p} \sigma} \quad \text { density fluctuation }
$$

Fourier transf.

$$
\left|\psi_{0}\right\rangle=\exp \left[\int \mathrm{d} \mathbf{r d} \mathbf{r}^{\prime} \tau\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)\right]\left|\Phi_{0}\right\rangle
$$

1-st quantized form

$$
\psi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{N}}\right)=\exp \left[\sum_{\mathrm{ij}} \tau\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right)\right] \Phi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{N}}\right)
$$

inhomogen. system

$$
\begin{gathered}
\text { Jastrow function } \\
\psi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{N}}\right)=\exp \left[\sum_{\mathrm{i}} \mathrm{~g}\left(\mathbf{r}_{\mathrm{i}}\right)+\sum_{\mathrm{ij}} \tau\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right)\right] \Phi_{0}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{N}}\right)
\end{gathered}
$$

Short-range correlations

distinction between interatomic and intra-atomic correlations

1) interatomic correlations
reduce charge fluctuations on a given site compared with SCF

C atom in $\mathrm{C}_{2} \mathrm{H}_{2}$ correlat. strength
extreme case: $\mathrm{Gd}^{3+} 4 \mathrm{f}^{7}$ no $4 \mathrm{f}^{6}$ or $4 \mathrm{f}^{8}$ not so extreme:
$\mathrm{Ce}^{3+}: 4 \mathrm{f}^{1}$ and small part $4 \mathrm{f}^{0}$

\longrightarrow singlet Kondo effect
when applied to bonds
van der Waals interactions

2) intra-atmic correlations

Hund's rule correl., in case of 4f shell $J=L-S$ for $f^{n} \quad n<7$

$$
\text { e.g., } \operatorname{Pr}^{3+} \longrightarrow 4 f^{2} \longrightarrow \mathrm{~J}=4
$$

but also important in paramagn. Fe , even in C in $\mathrm{C}_{2} \mathrm{H}_{2}$

Description of the correlation hole

starting point: SCF calculations, e.g., CRYSTAL or WANNIER choice of basis set of GTO's
optimal description: construct (nonorthog.) wavelets from basis set different coarse graining
$\xrightarrow{\longrightarrow}$ introduce operator $\mathrm{n}_{\sigma}(\mathrm{i}), \quad \mathbf{s}(\mathrm{i})$ referring to wavelet i

$$
\begin{aligned}
& \mathrm{n}_{\sigma}(\mathrm{i})=\mathrm{b}_{\sigma}^{+}(\mathrm{i}) \mathrm{b}_{\sigma}(\mathrm{i}) \\
& \mathrm{O}(\mathrm{i}, \mathrm{j})= \begin{cases}\mathrm{n}_{\sigma}(\mathrm{i}) \mathrm{n}_{-\sigma}(\mathrm{i}) \\
\mathrm{n}(\mathrm{i}) \mathrm{n}(\mathrm{j}) & \\
\mathbf{s}(\mathrm{i}) \mathbf{s}(\mathrm{j}) & \mathrm{O}(\mathrm{i}, \mathrm{j})\left|\Phi_{\text {SCF }}\right\rangle \\
\begin{array}{l}
\text { reduce (or enhance) } \\
\text { configurations } \\
\text { (Stollonff }+\mathrm{PF}
\end{array}\end{cases}
\end{aligned}
$$

reduce number of configur. to be corrected to a minimum applicable also to metals
disadvantage: nonorthogonality of wavelets
alternative:
use orthogonal destruction operators $\mathrm{c}_{\mathrm{i} \sigma}, \mathrm{c}_{\mathrm{j} \sigma^{\prime}}$ in
$\mathrm{H}_{\text {res }}=\mathrm{H}-\mathrm{H}_{\mathrm{SCF}}$, localized occupied SCF orbitals
\leadsto Wannier (or Foster-Boys) centered at atoms
i and j and create electrons in (non-orthog.) virtual orbitals $\mathrm{a}_{\alpha \sigma}^{+}, \mathrm{a}_{\beta \sigma^{\prime}}^{+}$(atomic like orbitals) "near" sites
i and j (P. Pulay '83, H.-J. Werner and M. Schütz '95)
advantage: much simpler to implement, e.g., into MOLPRO
disadvantage: not a priori applicable to metals like Na

How to apply this to solids?

(a) size extensivity: applying perturb. theory (Moeller-Plesset)
m not a problem
going beyond (e.g., CI or variational) $\quad \longrightarrow$ problem
solution: use exponent. form e^{S}, e.g., coupled cluster method
like Jastrow factor
much more elegant: use cumulants $m \longrightarrow$ need not use exponent. form
(b) method of increments (H. Stoll '92)

$\mathrm{E}_{\text {corr }}=\sum_{\mathrm{i}} \varepsilon_{\text {corr }}(\mathrm{i})+\sum_{\langle\mathrm{ij}\rangle} \delta \varepsilon_{\text {corr }}(\mathrm{i}, \mathrm{j})+\ldots$
like Bethe-Goldstone cluster expansion
atoms (or bonds)

achievements:

many-body wavefunction for ground state of many insulators and semicond.
recently also some metals, lattice constants, binding energies, bulk moduli (see, e.g., review B. Paulus, including early work of Kiel et al., Horsch et al., more recent: Dolg, Doll, Rosciszewski, Birkenheuer et al.)
at present: improved new attempt by R. Bartlett, V. Staemmler,
G. Scuseria, C. Pisani and M. Schütz et al.
open problem: strongly correlated systems with d and f electrons
MC-SCF as starting point
room for much work

Correlation holes of excited states

$n \longrightarrow$ relevant for energy bands
example semiconductors: add an electron $n \longrightarrow$ long ranged polarization cloud but also relaxation and loss of ground-state correlations
different to van der Waals correlations
in ground state
(reason for failure of LDA to describe energy gap)
quasiparticle: electron (hole) + correl. hole move together though system in form of

Bloch wave
example: hole state $\quad \mathrm{SCF}:|\mathbf{k} v \sigma\rangle=\frac{1}{\sqrt{\mathrm{~N}_{0}}} \sum_{\mathbf{R n}} \alpha_{\nu \mathrm{n}}(\mathbf{k}) \mathrm{e}^{\mathrm{i} \mathbf{k R}}|\mathbf{R n} \sigma\rangle$

$$
\begin{gathered}
|\mathbf{R n} \sigma\rangle=\mathrm{c}_{\mathbf{R n} \sigma}\left|\Phi_{\mathrm{SCF}}\right\rangle \\
\left.\left.\left|\psi_{\mathbf{k} v \sigma}^{\mathrm{N}-1}\right\rangle=\frac{1}{\sqrt{\mathrm{~N}_{0}}} \sum_{\mathrm{nR}} \alpha_{\nu \mathrm{n}}(\mathbf{k}) \mathrm{e}^{\mathrm{i} \mathbf{k R}} \right\rvert\, \mathbf{R n} \sigma\right\}
\end{gathered}
$$

wave operator Ω :
$\mid \mathbf{R n} \sigma\}=\Omega|\mathbf{R n} \sigma\rangle$
scatter. matrix S :
$\mathrm{S}=\Omega-1$
contains 1- and 2-particle excitations
applications: keep hole state frozen and do new SCF calculation
\longrightarrow relaxat. + polarizat.; for long-range part
use ε (diel. const.)
$\Delta \varepsilon_{\mathbf{k} v \sigma}=\sum_{\mathbf{R n n}} \alpha_{\nu \mathrm{n}}^{*}(\mathbf{k}) \alpha_{\nu \mathrm{n}^{\prime}}(\mathbf{k}) \mathrm{e}^{\mathrm{ikR}}\left\langle\mathrm{c}_{\mathrm{on} \sigma} \mid \mathrm{H}_{\mathrm{res}} \mathrm{Sc}_{\mathbf{R n} \sigma}\right\rangle_{\mathrm{c}}$
similar procedure for conduction band
recent example: MgO (L. Hozoi et al.), TZ basis set

SCF: gap	16.2 eV
includ. correl.	$8.1 \mathrm{eV} \quad$ (somewhat fortuitous)
experiment	7.9 eV
LDA	5.0 eV

large contribut. from on-site and n.n.-site relaxation
surprise: width of valence band increases due to correlat.

Green's function:

$$
\mathrm{G}_{\nu}(\mathbf{k}, \omega)=\frac{1}{\omega-\varepsilon_{\nu}(\mathbf{k})-\Sigma_{\nu}(\mathbf{k}, \omega)}
$$

quasiparticle representation:

$$
\mathrm{G}(\mathbf{k}, \omega)=\frac{\mathrm{Z}}{\omega-\varepsilon_{\mathrm{qp}}(\mathbf{k})-\mathrm{i} \gamma_{\mathrm{k}} \operatorname{sgn} \omega}+\mathrm{G}_{\mathrm{inc}}(\mathbf{k}, \omega)
$$

$\mathrm{G}_{\text {inc }}(\mathbf{k}, \omega)$ from excitations involving internal degrees of freedom of the correlation hole (think of drum head)

- can be strongly damped
- simplest example: satellite peaks in PEs

Formalism:

retard. Green fct. $\quad \mathrm{G}_{\sigma}(\mathbf{k}, \mathrm{t})=-\mathrm{i} \Theta(\mathrm{t})\left\langle\psi_{0}\right|\left[\mathrm{c}_{\sigma}(\mathbf{k}, \mathrm{t}), \mathrm{c}_{\sigma}^{+}(\mathbf{k})\right]_{+}\left|\psi_{0}\right\rangle$
notation:

$$
(\mathrm{A} \mid \mathrm{B})_{+}=\left\langle\psi_{0}\right|\left[\mathrm{A}^{+}, \mathrm{B}\right]_{+}\left|\psi_{0}\right\rangle
$$

choose most important operators which $\quad \mathrm{c}_{\sigma}^{+}(\mathrm{i}), \mathrm{A}_{\mathrm{n}}(\mathrm{i}) \Rightarrow\left\{\mathrm{A}_{\nu}(\mathrm{i})\right\}$ generate the correlation hole:

$$
\longrightarrow\left\{\mathrm{A}_{v}(\mathbf{k})\right\}
$$

Green's function matrix: $\quad \mathrm{G}_{\mu \nu}(\mathbf{k}, \mathrm{t})=-\mathrm{i} \Theta(\mathrm{t})\left(\mathrm{A}_{\mu}(\mathbf{k}, \mathrm{t}) \mid \mathrm{A}_{\nu}(\mathbf{k})\right)_{+}$

$$
\text { with: } \quad \mathrm{LO}=[\mathrm{H}, \mathrm{O}]_{-}=\mathrm{i} \frac{\mathrm{dO}}{\mathrm{dt}} \quad \mathrm{~m} \longrightarrow \mathrm{O}(\mathrm{t})=\mathrm{e}^{\mathrm{iLt} \mathrm{O}}
$$

$$
\mathrm{G}_{\mu \nu}(\mathbf{k}, \mathrm{z})=\left(\mathrm{A}_{\mu} \left\lvert\, \frac{1}{\mathrm{z}-\mathrm{L}} \mathrm{~A}_{v}\right.\right)
$$

remain within the space of $\left\{\mathrm{A}_{\nu}(\mathbf{k})\right\} \longrightarrow$ projection method (Löwdin)

example: Ni (paramagn.)

choice of $\left\{\mathrm{A}_{\nu}\right\}$

$$
\begin{aligned}
& \mathrm{A}_{v}^{(0)}(\mathbf{k})=\mathrm{c}_{v \uparrow}^{+}(\mathbf{k}) \\
& A_{i \mathrm{ij}}^{(1)}(\ell)=\left\{\begin{array}{lll}
\mathrm{c}_{\mathrm{i} \uparrow}^{+}(\ell) \mathrm{n}_{\mathrm{i} \downarrow}(\ell) & \mathrm{i}=\mathrm{j} & \mathrm{~A}_{\mathrm{ij}}^{(2)}(\ell)=\mathrm{c}_{\mathrm{i} \uparrow}^{+}(\ell) \mathrm{s}_{\mathrm{j}}^{\mathrm{z}}(\ell)+\mathrm{c}_{\mathrm{i} \downarrow}^{+}(\ell) \mathrm{s}_{\mathrm{j}}^{+}(\ell) \\
\mathrm{c}_{\mathrm{i} \uparrow}^{+}(\ell) \mathrm{n}_{\mathrm{j}}(\ell) & \mathrm{i} \neq \mathrm{j} & \mathrm{~A}_{\mathrm{ij}}^{(3)}(\ell)=\mathrm{c}_{\mathrm{j} \downarrow}^{+}(\ell) \mathrm{c}_{\mathrm{j} \uparrow}^{+}(\ell) \mathrm{c}_{\mathrm{i} \downarrow}(\ell)
\end{array}\right. \\
& \mathrm{A}_{\mathrm{ij}}^{(\alpha)}(\mathbf{k})=\frac{1}{\sqrt{\mathrm{~N}_{0}}} \sum_{\ell} \mathrm{A}_{\mathrm{ij}}^{(\alpha)}(\ell) \mathrm{e}^{\mathrm{i} \mathbf{k R} \ell} \quad \text { total\#: } 1+25+20+20=66
\end{aligned}
$$

Results for paramagnetic Ni

(Unger, Igarashi)

breakdown of the quasiparticle picture

one-dimensional systems:
fractional Quantum-Hall effect: excitations with fractional charges
strong coupling limit due to a high magnetic field
electrons on frustrated lattices: fractional charges at special filling
factors in the strong correlation limit, even
in 3 dimensions

kagomé lattice

$\mathrm{H}=-\mathrm{t} \sum_{\langle\mathrm{ij}\rangle \sigma}\left(\mathrm{c}_{\mathrm{i} \sigma}^{+} \mathrm{c}_{\mathrm{j} \sigma}+\right.$ h.c. $)+\mathrm{U} \sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i} \uparrow} \mathrm{n}_{\mathrm{i} \downarrow}+\mathrm{V} \sum_{\langle\mathrm{ij}\rangle} \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}}$
$1 / 6$ filling, i.e., one electron per triangle

$$
\mathrm{U} \rightarrow \infty \quad|\mathrm{t}| \ll \mathrm{V} \quad \text { strong correlations }
$$

(1) $t=0 \longrightarrow$ ground state is macroscop. degenerate
(2) $\mathrm{t} \neq 0 \longrightarrow H_{\text {hex }}=-g \sum_{\{\square\}\{\Delta \boldsymbol{\square}\}}(|\hat{\longrightarrow}\rangle\langle \rangle|+| D\rangle\langle \rangle \mid+$ H.c. $)$

$$
g=\frac{6 t^{3}}{V^{2}}
$$

add now a particle $m \longrightarrow \Delta \mathrm{E}=2 \mathrm{~V}$

correlation hole has fallen apart.
if there is a weak restoring force
$\mathrm{m} \longrightarrow$ correlation hole is very extended

