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Our goal

compute energy bands with quantum chemical accuracy

long-term objective: strong correlations in transition-metal
compounds — magnetism, satellite structures etc.

Motivation

the limitations of the DFT-based methods:

band gaps, “strong correlations” in 3d and 4f solid-state
compounds (Mott insulating states, magnetism etc.)
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Our approach

quasiparticle picture, local Hamiltonian formalism

first step : all-electron Hartree-Fock calc. for the periodic system
−→ HF bands, localized Wannier orbitals (WO’s) [crystal program]

second step : the correlation treatment [molpro package]

finite fragment C cut from the infinite solid (up to 100 sites, to
include the tails of the “active” orbitals)

use the data from the periodic Hartree-Fock (HF) calculation

localized WO’s at the atomic sites of the finite cluster

HF embedding potential due to the rest of the crystal
(the surrounding HF electron “sea”)

V emb
αβ = F

crys
αβ −F [PC]αβ , PC = 2

∑occ
ν |wν〉〈wν | , α, β, ν ∈ C
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Starting point: Hartree-Fock

The fundamental gap : (N+1)/(N−1) el. addition/removal states

|ΦN+1
Rcσ 〉 = c†

Rcσ|Φ〉 and |ΦN−1
Rvσ 〉 = cRvσ|Φ〉

For clusters which are large enough, the HF bands of the periodic crystal
can be recovered by diagonalizing k-dependent matrices of the form:

HHF
nn′(k) =

∑

R

e ikR
(

〈ΦN∓1
0nσ |H |Φ

N∓1
Rn′σ〉 − EHF

0 δ0Rδnn′

)

Diagonal terms (R=0) : on-site Koopmans excitation energies, i.e.,

ionization potentials IPHF
vv (0) = 〈ΦN−1

0vσ |H |Φ
N−1
0vσ 〉−EHF

0 = −ǫHF
0v > 0 and

electron affinities EAHF
cc (0) = EHF

0 − 〈ΦN+1
0cσ |H |Φ

N+1
0cσ 〉 = −ǫHF

0c < 0

Off-diagonal (R 6=0) : tight-binding hopping matrix elements (ME’s)

tHF
nn′(R) = 〈ΦN∓1

0nσ |H − EHF
0 |Φ

N∓1
Rn′σ〉
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Including correlations

Short-range relaxation and polarization : separate SCF optimizations,
orbitals in the immediate neighborhood of the additional electron (hole)

[ the (N±1) Wannier orbital is kept frozen ]

Loss of ground-state correlations : small effect, not discussed here

Long-range polarization :
the approximation of a dielectric continuum

∆E (∞) = ∆E (Ri)− C/Ri , C = ǫ0−1
2ǫ0

e2

C : by computing ∆E (R1), ∆E (R2) for two different radii R1, R2

7−→ “correlated” wave-functions, renormalized real-space ME’s:

Hnn′(k) =
∑

R e ikR
(

〈ΨN∓1
0nσ |H |Ψ

N∓1
Rn′σ〉 − E0δ0Rδnn′

)
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MgO: the HF data

HF gap : 16.20 eV; Exp.: 7.8 eV
(Basis sets: Mg – TZ; O – TZ + pol.)

low-lying conduction bands : Mg 3s–3p

valence-band states : oxygen 2p

Conduction-band
Wannier orbitals (WO’s) :

the most diffuse

after projection onto the fi-

nite cluster, their norms are

>98.5% of the orig. WO’s
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Short-range relaxation and polarization effects

separate SCF optimizations,
orbitals in the immediate
neighborhood of the additional
electron/hole

the “(N±1)”th Wannier orbital is
frozen

∆Hnn(0) O 2s O 2p Mg 3s Mg 3p

On-site orb. relaxation −2.64 −2.04 — —
NN orb. relaxation −1.23 −1.20 −0.81 −0.84
NNN orb. relaxation −0.18 −0.18

( O 2s/2p WO’s: 12 NN O’s ; Mg 3s/3p WO’s: 6 NN O’s, see figure )
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Long-range polarization

The approximation of a dielectric continuum :

∆E (∞) = ∆E (Ri)− C/Ri

∆E (Ri) : short-range relax./pol. within a sphere of radius Ri

C : a) C = ǫ0−1
2ǫ0

e2 −→ C = 0.45 a.u. (ǫ0 = 9.7)

b) by computing δEji = ∆E (Rj)−∆E (Ri)

Ri : NN’s ; Rj : NN’s + NNN’s (previous page)

C ∼
RiRj

Rj−Ri
δEji −→ C = 0.41 a.u.

−→ the approx. of a dielectric continuum works quite well

∆Hnn(0) O 2s O 2p Mg 3s Mg 3p

Long-range polarization −1.80 −1.80 −2.25 −2.25
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Correlation-induced corrections to the gap

∆Hnn(0) O 2s O 2p Mg 3s Mg 3p

On-site orb. relaxation −2.64 −2.04 — —
NN orb. relaxation −1.23 −1.20 −0.81 −0.84
Long-range polarization −1.80 −1.80 −2.25 −2.25
Total −5.67 –5.04 –3.06 –3.09

valence bands : shift upwards by approx. 5 eV
conduction bands : downwards shift, approx. 3.1 eV

“correlated” gap : 8.1 eV; exp.: 7.8 eV
LDA gap : 5.0 eV [crystal package]

95% of the difference between HF and experiment !!
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Renormalized hoppings, band widths

less affected, as compared to the diagonal (on-site) matrix elements

separately optimized (N ± 1) wave-functions ΨN±1
0 i , ΨN±1

R j

(relaxation effects in the immediate vicinity of the extra particle)

tij = (Hij − SijHii )/(1 − S2
ij ) [ 2×2 secular problem in terms of

non-orthog. sets of orbitals (Non-Orthog. Config.-Interaction, NOCI ) ]

tNN −→ RNN =(1, 1, 0)a/2 tNNN −→ RNNN =(1, 0, 0)a
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Conduction-band hopping matrix elements

Conduction-band states (Mg 3s–3p) : changes within ∼ 5%

tij(R) HF (frozen orb. CI) NOCI (relaxed orbs.)

tNN :
3s − 3s 0.41 0.42
3px(y) − 3px(y) 0.66 0.69
3px(y) − 3py(x) 0.72 0.77
3pz − 3pz 0.13 0.13
tNNN :
3s − 3s 0.36 0.37
3px − 3px 0.77 0.74
3py(z) − 3py(z) 0.13 0.12

some hoppings are enlarged, some are reduced by correlations
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O 2p valence bands

correlation-induced broadening, by 10 − 15%

tij (R) HF (FO-CI) NOCI (relaxed orbitals)
Two-site Two-site, NN O’s

tNN :
2px(y) − 2py(x) 0.42 0.49 0.47
2px(y) − 2px(y) 0.32 0.37 0.36
2pz − 2pz 0.12 0.14 0.13
tNNN :
2px − 2px (σ-ov.) 0.06 0.06 —

main effect :
“bending” of the p orbitals due to the
adjacent O hole −→
increased inter-site overlap

wΓL
2p = 8t110

xx + 8t110
xy − 4t011

xx + ...

wΓL
2p : 5.5 (HF) −→ 6.2 (HF +correl.)
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O valence bands : comparison to experiment

HF HF + correl. PES LDA

w(2p) 5.5 6.2 ∼ 6.5 [1,2] 4.7

∆E 1,2
2p 3.5 ... 3.5 [2] 3.0

∆E2s2p 15.9 14.8 14.0 [1] 10.7

[1] S. Kowalczyk, D. A. Shirley et al., Solid State Commun. 23 (1977).

[2] L. H. Tjeng et al., Surf. Sci. 235 (1990).

∆E1,2
2p : separation between the two
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MgO :

charge relaxation effects are essential for computing
accurate band gaps

band widths are less affected

What about spin polarization and relaxation ?

Illustrative example :

doped hole (electron) in the cuprate antiferromagnetic lattice
(reduction by a factor of 4 of the band widths )
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“Correlated” bands in layered Cu oxides

Formal valence states for the undoped layer:
Cu2+ 3d9 (S =1/2) ; O2− 2p6

180o Cu – O– Cu interactions
dx2

−y2 − px ,y σ-bonds

Cu3dx2�y2O2pyO2px
Superconductivity: both hole and electron doping
(e.g., La2−xSrxCuO4 vs. Sr1−xNdxCuO2)

Dressed carriers : strong correlation effects (charge, spin, ...)
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Method

Ab initio wave-function based approach

Finite fragments (up to 11 CuO4 plaquettes) :

all-electron, multiconfiguration calculations [molcas package]

(Static) embedding :

Madelung field ←− point charges

finite charge distrib. of NN’s ←− effective ion potentials

less rigorous as compared to the study on MgO
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Multiconfiguration approach : CAS SCF

The minimal active space in cuprates :
one 3dx2

−y2 orbital per Cu site

provides the correct antiferromagnetic (AFM) ground-state
configuration (Anderson superexchange mechanism )
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Multiconfiguration approach : CAS SCF

The N-electron wave-function : complete active space (CAS)

“full” Configuration Interaction (CI) within a relatively small set of

“active” orbitals (e.g., one 3dx2−y2 per Cu site ) −→ Ψ =
PCAS

k CkΦk

The orbital variational space :

Gaussian-type basis functions −→

AO’s χp(r) =
P

ν
aνp µν(r) −→

LCAO’s

highly flexible: orbitals and CI coefficients are both variationally optimized

near-degeneracy (static) correlation effects :
competing valence structures, bond breaking, magnetism (Anderson
superexchange, double exchange) etc.
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The Zhang-Rice (ZR) -like state

crystal structure :
La1.85Sr0.15CuO4

3×3 9-plaquette cluster,
one “doped” hole

CASSCF calculations :
10 active orbitals, 10 electrons
(9 dx2−y2 , 1 pZR

σ )

CucOcCunnnCunn
xy

An O 2p, ZR-like hole induces ferromagnetic correlations among the
adjacent Cu dx2−y2 spins : FM “spin polaron”

Relevant AOs Mulliken charge Mulliken spin

Cuc 3dx2−y2 1.17 0.06
Ox,y

c 2px,y 1.62 −0.01
Cux,y

nn 3dx2−y2 1.27 0.31
Cuxy

nnn 3dx2−y2 1.28 −0.32
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Nonlocal spin correlations, effective hoppings

Effective hoppings (QP picture): t = (HLR − SLRHLL)/(1 − S2
LR)

HLR = 〈ΨL|H|ΨR 〉 , SLR = 〈ΨL|ΨR〉

ΨL, ΨR : separately optimized, localized ZR-like solutions (CASSCF) −→

both charge and spin relaxation (“readjustment”) on neighboring

plaquettes
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Renormalized hoppings

When moving through the AFM lattice, the O 2p hole must drag along the spin
polarization “cloud” at nearby Cu sites −→ strong renormalization of the hoppings

(essentially, non-dynamical correlation)

CASSCF and State-Interaction (CAS SI) calculations :

2(3)-plaquette “central” region (L,R) + adjacent plaquettes

“bare” t : a) the Cu2+ 3d9 (S = 1/2) neighbors −→ Zn2+ 3d10 (S = 0)
b) FM “lattice”

Bare values Renorm.

t 0.450/0.540 0.133
t′ 0.262/0.305 0.014
t′′ 0.107/0.113 0.073

[ LDA: t≈0.45 eV; Fits of PES data:
t≈0.15 ]

Tight-binding dispersion ǫ(k) :

−2t (cos kx +cos ky )+4t′ cos kx cos ky

−2t′′(cos 2kx + cos 2ky ) + ...
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The ZR-like band
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Full line : lowest
(renormalized)
electron-removal band

Dots: t′′ = 0

Experiment : AR-PES,

Ino et al., PRB 62 (2000).

All important details of the experimental spectrum are faithfully reproduced in
the theoretical results :

overall width of ≈1 eV

flat dispersion near the (π,0) point

maximum close to the (π/2,π/2) region
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States at higher binding energies: z
2 holes

Significant nearest-neighbor mixing between the ZR-like and z2 hole
states : tm(cos kx − cos ky) ; tm = 0.15, ∆ǫ = 0.60 (eV)

[ CASSCF/State-Interaction (CAS SI) ]

Mulliken charge dx2−y2 d3z2−r2 σ px/py (x4) apex pz

ZR hole 1.05 2.00 1.60 1.95
d3z2−r2 hole 1.40 1.15 1.70 1.85

Undoped system, Mulliken charges of the σ px/py O orbitals: ≈1.85
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Dashed line: ZR dispersion

Full line : lowest renormalized
electron-removal band including
the ZR–z2 mixing

Dots: t′′ = 0

Experiment : AR-PES,

Ino et al., PRB 62 (2000).
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Fermi “surface”: doping dependence

Undoped cuprates: Mott insulators

With doping: uniform shift of the Fermi level across the valence/conduction
bands (ARPES, core-level XPS, optical absorption); rigid-band picture

The evolution of the FS with (hole) doping, as seen in ARPES and
magneto-transport measurements, follows directly from our ab initio results :
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deeply underdoped regime :
small hole pockets around
(π/2,π/2); d-wave
“pseudogap”

intermediate doping :
hole-like FS; d-wave
pseudogap

overdoped region :
gapless electron-like FS

New insight into the nature of the pseudogap state !

(no need to invoke exotic mechanisms such as charge “stripes”)
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Electron doped cuprates

— ARPES measurements [Armitage et al., PRL 88 (2000)] :

— CASSCF/SI : in a rigid-band picture, confirm the ARPES data
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(3d10 “QP” on the 3d9 “lattice”;
compared to the ZR band, different
ratios among the effect. hoppings)
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Conclusions

transparent formalism, controlled approximations

For MgO, a simple closed-shell ionic insulator :

good understanding of the major effects that determine the
electronic band structure

good agreement with the experiment

Next: dressed carriers in strongly correlated Cu oxides

renormalized hoppings of the ZR-like quasiparticle,
not accessible by DFT

ZR physics : richer than in the t-J picture

reproduce and explain the ARPES data (quasiparticle
dispersion, topology of the Fermi surface)

[ PRB 76, 085109 (2007); PRB 75, 174505 (2007); cond-mat:0707.4648 ]
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