Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusions

"Correlated" bands in oxides with wave-function based methods

L. Hozoi¹, M. Laad¹, U. Birkenheuer^{1,2}, H. Stoll³, P. Fulde¹

¹ MPI für Physik komplexer Systeme, Dresden
 ² Forschungszentrum Dresden-Rossendorf
 ³ Institut für Theoretische Chemie, Universität Stuttgart

Acknowledgements:

E. Pahl, A. Mitrushchenkov, S. Nishimoto, C. de Graaf, J. Fink

Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusions

1 Goals and approach

• "correlated" bands in oxides, wave-function based methodology

2 First applications

• MgO, a prototype closed-shell ionic insulator

Preliminary results for TM oxides

• renormalized bands and Fermiology in layered Cu oxides

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

4 Conclusions

Outline	Goals and approach ●000	First applications	Preliminary results for TM oxides	Conclusions
Our go	bal			

- compute energy bands with quantum chemical accuracy
- long-term objective: strong correlations in transition-metal compounds — magnetism, satellite structures etc.

Motivation

 the limitations of the DFT-based methods:
 band gaps, "strong correlations" in 3d and 4f solid-state compounds (Mott insulating states, magnetism etc.)

Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusions
	0000			
Our a	nnroach			

quasiparticle picture, local Hamiltonian formalism

first step: all-electron Hartree-Fock calc. for the *periodic system* → HF bands, localized Wannier orbitals (WO's) [CRYSTAL program]

second step: the correlation treatment [MOLPRO package]

- *finite fragment C* cut from the infinite solid (up to 100 sites, to include the tails of the "active" orbitals)
- use the data from the periodic Hartree-Fock (HF) calculation
 - localized WO's at the atomic sites of the finite cluster
 - HF embedding potential due to the rest of the crystal (the surrounding HF electron "sea")

 $V_{\alpha\beta}^{\text{emb}} = F_{\alpha\beta}^{\text{crys}} - F[P_{\mathcal{C}}]_{\alpha\beta}, \quad P_{\mathcal{C}} = 2\sum_{\nu}^{\text{occ}} |w_{\nu}\rangle \langle w_{\nu}|, \quad \alpha, \beta, \nu \in \mathcal{C}$

(日) (日) (日) (日) (日) (日) (日) (日)

Starting point: Hartree-Fock

The fundamental gap: (N+1)/(N-1) el. addition/removal states

 $|\Phi_{\mathbf{R}c\sigma}^{N+1}\rangle = c_{\mathbf{R}c\sigma}^{\dagger}|\Phi\rangle$ and $|\Phi_{\mathbf{R}v\sigma}^{N-1}\rangle = c_{\mathbf{R}v\sigma}|\Phi\rangle$

For <u>clusters</u> which are large enough, the HF bands of the periodic crystal can be recovered by diagonalizing \mathbf{k} -dependent matrices of the form:

$$H_{nn'}^{\rm HF}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\mathbf{R}} \left(\langle \Phi_{\mathbf{0}n\sigma}^{N\mp1} | H | \Phi_{\mathbf{R}n'\sigma}^{N\mp1} \rangle - E_0^{\rm HF} \delta_{\mathbf{0}\mathbf{R}} \delta_{nn'} \right)$$

Diagonal terms (R=0): on-site Koopmans excitation energies, i.e., ionization potentials $IP_{vv}^{HF}(\mathbf{0}) = \langle \Phi_{\mathbf{0}v\sigma}^{N-1} | H | \Phi_{\mathbf{0}v\sigma}^{N-1} \rangle - E_0^{HF} = -\epsilon_{\mathbf{0}v}^{HF} > 0$ and electron affinities $EA_{cc}^{HF}(\mathbf{0}) = E_0^{HF} - \langle \Phi_{\mathbf{0}c\sigma}^{N+1} | H | \Phi_{\mathbf{0}c\sigma}^{N+1} \rangle = -\epsilon_{\mathbf{0}c}^{HF} < 0$

Off-diagonal (R \neq 0): tight-binding hopping matrix elements (ME's) $t_{nn'}^{\text{HF}}(\mathbf{R}) = \langle \Phi_{\mathbf{0}n\sigma}^{N\mp1} | H - E_0^{\text{HF}} | \Phi_{\mathbf{R}n'\sigma}^{N\mp1} \rangle$

Short-range relaxation and polarization: separate SCF optimizations, orbitals in the immediate neighborhood of the additional electron (hole) [the $(N\pm 1)$ Wannier orbital is kept frozen]

Loss of ground-state correlations: small effect, not discussed here

Long-range polarization :

the approximation of a dielectric continuum

$$\Delta E(\infty) = \Delta E(R_i) - C/R_i , \quad C = rac{\epsilon_0 - 1}{2\epsilon_0}e^2$$

C: by computing $\Delta E(R_1)$, $\Delta E(R_2)$ for two different radii R_1 , R_2

 \longmapsto "correlated" wave-functions, renormalized real-space ME's:

$$H_{nn'}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\mathbf{R}} \left(\langle \Psi_{\mathbf{0}n\sigma}^{N\mp1} | H | \Psi_{\mathbf{R}n'\sigma}^{N\mp1} \rangle - E_{\mathbf{0}} \delta_{\mathbf{0}\mathbf{R}} \delta_{nn'} \right)$$

 Outline
 Goals and approach
 First applications
 Preliminary results for TM oxides

 0000
 00000000
 000000000
 000000000

Conclusions

MgO: the HF data

- HF gap: 16.20 eV; Exp.: 7.8 eV (Basis sets: Mg - TZ; O - TZ + pol.)
- low-lying conduction bands: Mg 3s-3p
- valence-band states : oxygen 2p

Conduction-band Wannier orbitals (WO's):

 ${\ensuremath{\bullet}}$ the most diffuse

after projection onto the finite cluster, their norms are >98.5% of the orig. WO's

Short-range relaxation and polarization effects

- separate SCF optimizations, orbitals in the immediate neighborhood of the additional electron/hole
- the "(N±1)" th Wannier orbital is frozen

$\Delta H_{nn}(0)$	0 2 <i>s</i>	0 2 <i>p</i>	Mg 3 <i>s</i>	Mg 3p	
On-site orb. relaxation	-2.64	-2.04	—	_	
NN orb. relaxation	-1.23	-1.20	-0.81	-0.84	
NNN orb. relaxation	-0.18	-0.18			
$(O_{2a}/2\pi) MO'_{ab} 12 NN$	0'	1 m 2 m /2 m		0'-	£: .

(O 2s/2p WO's: <u>12 NN O's</u>; Mg 3s/3p WO's: <u>6 NN O's</u>, see figure)

Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusions
		0000000		

Long-range polarization

The approximation of a *dielectric continuum*:

 $\Delta E(\infty) = \Delta E(R_i) - C/R_i$

• $\Delta E(R_i)$: short-range relax./pol. within a sphere of radius R_i

• C: a)
$$C = \frac{\epsilon_0 - 1}{2\epsilon_0} e^2 \longrightarrow C = 0.45 \text{ a.u.} (\epsilon_0 = 9.7)$$

b) by computing $\delta E_{ji} = \Delta E(R_j) - \Delta E(R_i)$
 $R_i : \text{NN's}; R_j : \text{NN's} + \text{NNN's} (previous page)$
 $C \sim \frac{R_i R_j}{R_j - R_i} \delta E_{ji} \longrightarrow C = 0.41 \text{ a.u.}$

 $\longrightarrow \,$ the approx. of a dielectric continuum works quite well

$\Delta H_{nn}(0)$	0 2 <i>s</i>	0 2 <i>p</i>	Mg 3 <i>s</i>	Mg 3 <i>p</i>
Long-range polarization	-1.80	-1.80	-2.25	-2.25

Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusion
· ·				

Correlation-induced corrections to the gap

$\Delta H_{nn}(0)$	0 2 <i>s</i>	O 2 <i>p</i>	Mg 3 <i>s</i>	Mg 3 <i>p</i>
On-site orb. relaxation	-2.64	-2.04	—	—
NN orb. relaxation	-1.23	-1.20	-0.81	-0.84
Long-range polarization	-1.80	-1.80	-2.25	-2.25
Total	-5.67	-5.04	-3.06	-3.09

- valence bands: shift *upwards* by approx. 5 eV
- conduction bands: downwards shift, approx. 3.1 eV
- "correlated" gap: 8.1 eV; exp.: 7.8 eV
- LDA gap: 5.0 eV [CRYSTAL package]

95% of the difference between HF and experiment !!

 Outline
 Goals and approach
 First applications
 Preliminary results for TM oxides

 0000
 00000000
 000000000
 000000000

Renormalized hoppings, band widths

less affected, as compared to the diagonal (on-site) matrix elements

- separately optimized $(N \pm 1)$ wave-functions $\Psi_{0i}^{N\pm 1}$, $\Psi_{Rj}^{N\pm 1}$ (relaxation effects in the immediate vicinity of the extra particle)
- t_{ij} = (H_{ij} − S_{ij}H_{ii})/(1 − S²_{ij}) [2×2 secular problem in terms of non-orthog. sets of orbitals (Non-Orthog. Config.-Interaction, <u>NOCI</u>)]

Conduction-band hopping matrix elements

Conduction-band states (Mg 3s-3p): changes within $\sim 5\%$

$t_{ij}(\mathbf{R})$	HF (frozen orb. CI)	NOCI (relaxed orbs.)
t _{NN} :		
3 <i>s</i> – 3 <i>s</i>	0.41	0.42
$3p_{x(y)} - 3p_{x(y)}$	0.66	0.69
$3p_{x(y)} - 3p_{y(x)}$	0.72	0.77
$3p_{z} - 3p_{z}$	0.13	0.13
t _{NNN} :		
3 <i>s</i> – 3 <i>s</i>	0.36	0.37
$3p_x - 3p_x$	0.77	0.74
$3p_{y(z)} - 3p_{y(z)}$	0.13	0.12

• some hoppings are enlarged, some are reduced by correlations

Outline	Goals and approach 0000	First applications	Preliminary results for TM oxides	Conclusions
0.2n	valence hands	2		

 $\bullet\,$ correlation-induced broadening, by $\,10-15\%$

$t_{ii}(\mathbf{R})$	HF (FO-CI)	NOCI (relaxed orbitals)	
	. ,	Two-site	Two-site, NN O's
t _{NN} :			
$2p_{x(y)} - 2p_{y(x)}$	0.42	0.49	0.47
$2p_{x(y)} - 2p_{x(y)}$	0.32	0.37	0.36
$2p_z - 2p_z$	0.12	0.14	0.13
t _{NNN} :			
$2p_{x} - 2p_{x} (\sigma$ -ov.)	0.06	0.06	—

- main effect :
 "bending" of the p orbitals due to the adjacent O hole → increased inter-site overlap
- $w_{2p}^{\Gamma L} = 8t_{xx}^{110} + 8t_{xy}^{110} 4t_{xx}^{011} + ...$ $w_{2p}^{\Gamma L}$: 5.5 (HF) \longrightarrow 6.2 (HF + correl.)

・ロト ・ 日 ト ・ モ ト ・ モ ト

1

Sac

O valence bands: comparison to experiment

	HF	HF + correl.	PES	LDA
(0)		C D		47
w(2p)	5.5	6.2	\sim 6.5 [1,2]	4.7
$\Delta E_{2p}^{1,2}$	3.5		3.5 [2]	3.0
ΔE_{2s2p}	15.9	14.8	14.0 [1]	10.7

[1] S. Kowalczyk, D. A. Shirley et al., Solid State Commun. 23 (1977). [2] L. H. Tjeng et al., Surf. Sci. 235 (1990).

- $\Delta E_{2p}^{1,2}$: separation between the two O 2p peaks
- ΔE_{2s2p} : O 2s bottom of the 2p bands

Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusions
		00000000		

MgO:

- charge relaxation effects are essential for computing accurate band gaps
- band widths are less affected

What about spin polarization and relaxation ?

Illustrative example :

doped hole (electron) in the cuprate antiferromagnetic lattice (reduction by a factor of 4 of the band widths)

 Outline
 Goals and approach
 First applications
 Preliminary results for TM oxides
 Conclusion

 0000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000

"Correlated" bands in layered Cu oxides

Formal valence states for the undoped layer:

Superconductivity: both *hole* and *electron* doping (e.g., $La_{2-x}Sr_xCuO_4$ vs. $Sr_{1-x}Nd_xCuO_2$)

Dressed carriers: strong correlation effects (charge, spin, ...)

(日) (日) (日) (日) (日) (日) (日) (日)

Ab initio wave-function based approach

Finite fragments (up to 11 CuO₄ plaquettes): all-electron, multiconfiguration calculations [MOLCAS package]

(Static) embedding:

- Madelung field ← point charges
- finite charge distrib. of NN's ← effective ion potentials

< D > < 同 > < E > < E > < E > < 0 < 0</p>

less rigorous as compared to the study on MgO

First applications

Preliminary results for TM oxides

Conclusions

Multiconfiguration approach : CAS SCF

The minimal active space in cuprates : one $3d_{x^2-y^2}$ orbital per Cu site

• provides the correct antiferromagnetic (AFM) ground-state configuration (*Anderson superexchange mechanism*)

First applications

Preliminary results for TM oxides

Conclusions

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Multiconfiguration approach : CAS SCF

The *N*-electron wave-function : complete active space (CAS) "full" Configuration Interaction (CI) within a relatively small set of <u>"active" orbitals</u> (e.g., one $3d_{x^2-y^2}$ per Cu site) $\longrightarrow \Psi = \sum_{k}^{CAS} C_k \Phi_k$

• highly flexible: orbitals and Cl coefficients are both variationally optimized

 near-degeneracy (static) correlation effects: competing valence structures, bond breaking, <u>magnetism</u> (Anderson superexchange, double exchange) etc.

First applications

Preliminary results for TM oxides

Conclusions

The Zhang-Rice (ZR) -like state

An O 2*p*, ZR-like hole induces *ferromagnetic correlations* among the *adjacent* Cu $d_{x^2-y^2}$ spins: FM "spin polaron"

Relevant AOs	Mulliken charge	Mulliken spin
$Cu_c \; 3d_{x^2-y^2}$	1.17	0.06
$O_c^{x,y}$ 2 $p_{x,y}$	1.62	-0.01
$Cu_{nn}^{x,y} 3d_{x^2-y^2}$	1.27	0.31
$Cu_{nnn}^{xy} 3d_{x^2-y^2}$	1.28	-0.32

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - のへで

Nonlocal spin correlations, effective hoppings

Effective hoppings (QP picture): $t = (H_{LR} - S_{LR}H_{LL})/(1 - S_{LR}^2)$ $H_{LR} = \langle \Psi_L | H | \Psi_R \rangle$, $S_{LR} = \langle \Psi_L | \Psi_R \rangle$

 Ψ_L , Ψ_R : separately optimized, localized ZR-like solutions (CASSCF) \longrightarrow both charge and <u>spin</u> relaxation ("readjustment") on neighboring plaquettes

First applications

Preliminary results for TM oxides

Conclusions

Renormalized hoppings

When moving through the AFM lattice, the O 2p hole must drag along the spin polarization "cloud" at nearby Cu sites \longrightarrow strong renormalization of the hoppings (essentially, non-dynamical correlation)

CASSCF and State-Interaction (CAS SI) calculations :

 ${\ensuremath{\bullet}}$ 2(3)-plaquette "central" region (L,R) $\ +$ adjacent plaquettes

• "bare" t: a) the Cu²⁺ $3d^9$ (S = 1/2) neighbors \longrightarrow Zn²⁺ $3d^{10}$ (S = 0) b) FM "lattice"

	Bare values	Renorm.
t	0.450/0.540	0.133
ť	0.262/0.305	0.014
t″	0.107/0.113	0.073

[LDA: $t \approx 0.45$ eV; Fits of PES data: $t \approx 0.15$]

Tight-binding dispersion $\epsilon(\mathbf{k})$: $-2t(\cos k_x + \cos k_y) + 4t' \cos k_x \cos k_y$ $-2t''(\cos 2k_x + \cos 2k_y) + ...$

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー の々ぐ

 Outline
 Goals and approach
 First applications
 Preliminary results for TM oxides

 0000
 000000000
 0000000000
 0000000000

The ZR-like band

All important details of the experimental spectrum are faithfully reproduced in the theoretical results:

- overall width of $\approx\!1~\text{eV}$
- flat dispersion near the $(\pi, 0)$ point
- maximum close to the $(\pi/2,\pi/2)$ region

States at higher binding energies: z^2 holes

Significant nearest-neighbor mixing between the ZR-like and z² hole states: t_m(cos k_x - cos k_y); t_m = 0.15, Δε = 0.60 (eV) [CASSCF/State-Interaction (CAS SI)]

Mulliken charge	$d_{x^2-y^2}$	$d_{3z^2 - r^2}$	$\sigma p_x/p_y$ (x4)	apex p_z
ZR hole	1.05	2.00	1.60	1.95
$d_{3z^2-r^2}$ hole	1.40	1.15	1.70	1.85

Undoped system, Mulliken charges of the $\sigma p_x/p_y$ O orbitals: ≈ 1.85

- Dashed line: ZR dispersion
- <u>Full line</u>: lowest renormalized electron-removal band including the ZR-z² mixing

- Dots: t'' = 0
- <u>Experiment</u>: AR-PES, Ino et al., PRB **62** (2000).

Outline Goals and approach First applications Preliminar

Preliminary results for TM oxides

Conclusions

Sac

Fermi "surface": doping dependence

- Undoped cuprates: Mott insulators
- With doping: uniform shift of the Fermi level across the valence/conduction bands (ARPES, core-level XPS, optical absorption); *rigid-band picture*

The evolution of the FS with (hole) doping, as seen in ARPES and magneto-transport measurements, follows directly from our ab initio results :

- deeply underdoped regime : small hole pockets around (π/2,π/2); d-wave "pseudogap"
- intermediate doping : hole-like FS; d-wave pseudogap
- overdoped region : gapless electron-like FS

New insight into the nature of the pseudogap state ! (no need to invoke exotic mechanisms such as charge "stripes")

First applications

Preliminary results for TM oxides

Conclusions

Electron doped cuprates

- ARPES measurements [Armitage et al., PRL 88 (2000)]:

- CASSCF/SI: in a rigid-band picture, confirm the ARPES data

- low (electron) doping → small pockets at (π,0)
- larger dopings → hole-like FS, d-wave pseudogap

 $(3d^{10}$ "QP" on the $3d^9$ "lattice"; compared to the ZR band, different ratios among the effect. hoppings)

Outline	Goals and approach	First applications	Preliminary results for TM oxides	Conclusions
Conclu	usions			

- transparent formalism, *controlled* approximations
- For MgO, a simple closed-shell ionic insulator :
 - good <u>understanding</u> of the major effects that determine the electronic band structure
 - good agreement with the experiment
- Next: dressed carriers in strongly correlated Cu oxides
 - renormalized hoppings of the ZR-like quasiparticle, not accessible by DFT
 - ZR physics : richer than in the t-J picture
 - reproduce and explain the ARPES data (quasiparticle dispersion, topology of the Fermi surface)

< D > < 同 > < E > < E > < E > < 0 < 0</p>

[PRB 76, 085109 (2007); PRB 75, 174505 (2007); cond-mat:0707.4648]