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Why use local orbitals in correlated calculations
The Coulomb hole

Caused by the repulsion of
electrons

Local: only non vanishing when
two electrons are close to each
other

The Coulomb hole may be described in different ways
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Non-local functions → steep
rise in complexity

Local functions → linear rise in
complexity
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Pros and cons of local orbitals

Advantages

Local functions are expanded in a local basis

Allows the development of linear scaling or low-scaling methods

Avoids intermediate constructs like molecular orbitals → Formulation
directly in computable terms

Disadvantages

Our normal mental picture of molecular orbitals is lost

No simple division into occupied and virtual orbitals

Loss of diagonal dominance of matrices → iterative methods may be
very slowly convergent

Localized orbitals are usefull when it is more important to distinguish
between near and far than between occupied and unoccupied
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Two main groups of local correlation methods

The domain approach

Divide molecule into domains

Localize occupied orbitals, redundant basis for virtual orbitals

Use domains to discriminate between strong and weak interactions

Computationally very efficient, does not go to standard MP2 limit

Some arbitrariness, assumes that occupied orbitals may be localized

Pioneered by P. Pulay, important work by H.J. Werner, M. Schütz

The domain-free approach

Develop local redundant basis for occupied and virtual orbitals

Use sparse arithmetic and storing to exploit locality

More expensive, dimension of basis for occupied orbitals = dimension
of basis set, does go towards MP2 limit

Pioneered by M. Head-Gordon and G. Scuseria
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General local basis expansions of occupied and virtual
orbitals

Goals: Basis functions that are both local and provide diagonal
dominant matrices

Procedure
1 Standard atomic orbital basis |χ〉, dimension N, metric S

χ
ij = 〈χi |χj〉

2 Transform to another local basis |φ〉 = |χ〉Y

3 Obtain redundant basis sets of dim N for occupied and for virtual
orbitals by |ψ〉 = (|ψk〉, |ψa〉) = |χ〉Z

4 Obtain pseudo-biorthonormal basis to simplify equations
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General local basis functions
cont’d

Step 2: |φ〉 = |χ〉Y: local basis of dimension 2N allowing
convergence of equations

Orthonormal local basis sets provide diagonal dominant matrices!
1 Cholesky factorization: Sχ = U

T
U, Y = U−1 (Used here !)

2 Symmetric orthogonalization: Y = (Sχ)−
1
2

Both may be realized in linear scaling fashion

Y = 1 leads to standard biorthonormal approach

Step 3: |ψ〉 = |χ〉Z: separate basis sets for occ. and virt.

Z = (PχSχY,QχSχY)

Pχ is density matrix in atomic orbital basis, Qχ = (Sχ)−1 − Pχ

Leads to a nonorthogonal basis of 2N functions- singular

Less local than projected AO’s (|χ〉PχSχ, |χ〉QχSχ)
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The Pseudo-biorthonormal basis

Standard biorthonormal approach: example, biorthonormal atomic
orbital basis

Introduce a basis 〈χ̄| so 〈χ̄i |χj〉 = δij

〈χ̄| = (Sχ)−1〈χ|

Assumes a nonsingular metric
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The Pseudo-biorthonormal basis

Extension to singular basis

Sψ = 〈ψ|ψ〉 is singular 2N × 2N singular metric

Introduce Sψª =

(

Pφ 0
0 Qφ

)

Has some of the properties of standard inverses, for example
SψSψªSψ = Sψ

Is the standard general (Penrose) inverse if |φ〉 is an orthonormal
basis, else (SψSψª)† 6= SψSψª

Introduce 〈ψ̄| = Sψª〈ψ|

Overlap P = 〈ψ̄|ψ〉 =

(

PφSφ 0
0 QφSφ

)

P is a projection matrix, for example P2 = P

As close as possible to standard biorthonormal basis
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Second quantization in a singular nonorthogonal basis
ψ, dim 2N

Purpose

Allow the development of methods using SQ directly in the ψ basis
without backtransforming from MO basis

Standard nonorth. singular nonorth.

Biorthonormal operator āP =
∑

R(S)
−1
PRaR āP =

∑

R(S)
ψª
PR aR

Anticommutation [a†P , āQ ]+ = δPQ [a†P , āQ ]+ = PQP

1-elec operator ĥ = (S−1h)PQa
†
P āQ ĥ = (Sψªhψ)PQa

†
P āQ
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The MP1 equations in the ψ basis

Inserting the expansion

T̂2 =
1

2

∑

abij

T ab
ij Ēai Ēbj , Eai =

∑

σ

a†aσ āiσ a, b: virtual, i , j : occupied

In the N4 MP1-equations

〈abij |Ĥ + [F̂ , T̂2]|HF〉 = 0 (1)

gives the N4 equations(χ-indeces neglected)

∑

cdkl

(QS)ac(QS)bd(PS)ki (PS)lj

(

ḡckdl + (WT)cdkl

)

= 0

W = F̄⊗ 1⊗ 1⊗ 1+ 1⊗ F̄⊗ 1⊗ 1+ 1⊗ 1⊗ F̄⊗ 1+

The QSQSPSPS-term come from the general anticommutation;
previously neglected by us and others
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The essential equations
∑

cdkl(QS)ac(QS)bd(PS)ki (PS)lj
(

ḡckdl + (WT)cdkl
)

= 0

Standard(Previous approach)

Solve ḡckdl + (WT)cdkl = 0

Solves in addition to the essential equations also a set of nonessential
equations

The nonessential equations are typically not automatically fulfilled →
slower convergence

Current approach

Include projection operators to solve only the essential conditions

Each iteration becomes more complicated, but (hopefully) faster
convergence
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Improve convergence by modifying the essential equations
∑

cdkl(QS)ac(QS)bd(PS)ki (PS)lj
(

ḡckdl + (WT)cdkl
)

= 0

Change W

Any matrix M may be added to W without changing the solution if
QSQSPSPSM = 0

Does not change solution, but may improve convergence by giving
equations that are more easy to precondition

Exploits that the a singular set of linear equations may be modified
without modifying the solution

Possible choice of M: W with interchange of blocks in F̄

F̄, standard

F =

(

PF̄ 0

0 QF̄

)

F̄, blocks interchanged

A =

(

QF̄ 0

0 PF̄

)
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Example of convergence of iterative method
C6H2 in various basis sets, DIIS with diagonal preconditioner

Improvements compared to standard iterative approach

Use of general local basis → convergence

Focus on the essential equations → improved convergence

W replaced by W +M → improved convergence

Number of iterations as function of convergence threshold

Basis Threshold All eqs. Ess. eqs. All eqs. Ess. eqs.
W W W +M W +M

STO-3G 10−3 9 8 11 7
STO-3G 10−5 17 13 24 11
cc-pVTZ 10−3 34 24 24 19
cc-pVTZ 10−5 94 53 62 39

The number of iterations may be reduced by upto a factor of 3
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Solution of the linear equations using DIIS

To solve the linear equations we employ DIIS, rather than PCG

The traditional formulation of DIIS depends on the dimension of the
subspace, also for linear equations with symmetric matrices

Reformulation ensures that three vectors in subspace is
mathematically identical to using all vectors in subspace

Ingredients: save optimal vectors and use norm containing
preconditioner
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Preliminary scalings
CnH2 for n = 10, 20, 24, 30, 34 in the cc-pVDZ basis

Upper figure: CPU time

Far from linear scaling (fourth-order
scaling!)

Lower figure: # of integrals
> 10−8

Two-electron integrals g in the
projected basis have significant
more non-vanishing elements
than in the atomic basis gχ

Number of projected integrals ≈
cubic scaling

Number of atomic integrals ≈
quadratic scaling
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Conclusion

A theoretical framework for working with singular basis sets has been
developed

Transformation to an orthonormal basis before projecting improves
convergence significantly

By solving only the essential equations and modyfying the equations,
the iterations may be reduced with upto a factor of 3

Orbitals obtained by symmetric orthogonalization converge somewhat
faster and regular than orbitals obtained by Cholesky-factorization

Major formal and computational restrictions have been eliminated

A long way to go...
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