

### le Kunenga di Pürehuroa

#### Calculations of band structures using wave-function based correlation methods

#### Elke Pahl



Centre of Theoretical Chemistry and Physics Institute of Fundamental Sciences Massey University Auckland New Zealand • Uwe Birkenheuer (Forschungszentrum Rossendorf)

- Peter Fulde (MPIPKS Dresden)
- Hermann Stoll (Universitaet Stuttgart)
- Liviu Hozoi (MPIPKS Dresden)

• Peter Schwerdtfeger (Massey University)



September, 14th 2007

# Introduction

- HF band structures of solid/ extended systems can be obtained more or less routinely (e.g. CRYSTAL)
- Calculations beyond Hartree Fock including electron correlation effects are very difficult
- Two approaches:
  - **DFT**: problems in systematic improvement
  - wave-function based methods: desirable!

well-developed quantum-chemical methods exist which allow for systematic improvement



# Introduction

- Band structures are hard because we have to deal with:
  - extended states
  - ionic states
  - excited states



# Key idea

• Electron correlation is a local property!



#### **Use local picture**

- cluster approach for correlation calculation
- make use of localized orbitals

Pair distribution function for homogeneous electron gas



exchange hole: Pauli principle

correlation hole: Coulomb repulsion



## Introduction

**<u>Aim:</u>** wave-function based *ab initio* correlation calculations of band structures



| Correlation calculations | Correlated     |
|--------------------------|----------------|
| on the cluster           | band structure |
| MOLPRO                   | PLOT_BANDS     |



September, 14th 2007

Correlated band structures **MPIPKS**, 2007

## Overview

#### 1)Localization:

Wannier function, band disentanglement

2) Cluster selection and Embedding

#### 3) Correlation calculation:

Frozen local hole approximation:

- theoretical background
- application to simple examples



## Wannier functions



- provide chemical, intuitive picture of electronic structure of cluster
- localized functions  $\Longrightarrow$  post-Hartree Fock electron correlation



## Wannier functions

•generalized Wannier functions:

for group of N bands separated by energy gap from rest over entire Brioullin zone

$$\varphi_{\mathbf{R}n}(\mathbf{r}) = \frac{V}{(2\pi)^3} \int_{\mathcal{B}Z} \left[ \sum_{\nu=1}^N U_{\nu n}(\mathbf{k}) \,\psi_{\mathbf{k}\nu}(\mathbf{r}) \right] \quad e^{i\mathbf{k}\mathbf{R}} \, d\mathbf{k}$$

**A** 7

#### Problem:

- •Scheme can only be applied to isolated band complexes
- In particular unoccupied Bloch waves do not exhibit needed band gaps



## **Band disentanglement**

HF band structure of diamond



![](_page_9_Picture_3.jpeg)

September, 14th 2007

## Localized Wannier functions

Example: diamond C<sub>11</sub> cluster

![](_page_10_Picture_2.jpeg)

HOMO

![](_page_10_Picture_4.jpeg)

LUMO

![](_page_10_Picture_6.jpeg)

September, 14th 2007

## **Cluster selection**

Example: diamond

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

September, 14th 2007

#### Construction of **new orbital space** for the subsequent correlation calculation

1) Generation of projected Wannier orbitals

$$|w'_{\mathbf{R}n}\rangle = \mathcal{P}|w_{\mathbf{R}n}\rangle$$
  
with  $\mathcal{P} = \sum |\xi_{\nu}\rangle (S^{-1})_{\nu\mu} \langle \xi_{\mu}|$ 

S: overlap matrix of cluster basis functions  $|\xi_{\nu}\rangle$ 

Selection of proj. WO's: all core orbitals in cluster, all occupied and virtual orbitals inside cluster and on dangling bonds

- 2) Construction of compact projected atomic orbitals (PAO's) from basis functions  $|\xi_{\nu}\rangle$  of active region
- 3) Filling orbitals to arrive at complete set of orthonormal orbitals (equals number of basis functions in cluster)

## **Embedding potential**

One can include the influence of the frozen environment on the electrons in the active region of the cluster by a one-particle contribution  $V_{emb}$  which is added to the molecular Hamiltonian in the subsequent correlation calculations

$$V_{\text{emb}} = F_{\text{solid}} - F_{\text{clus}}[P_{\text{solid}}(C)]$$
$$P_{\text{solid}}(C) = 2\sum_{\mathbf{R}n\in C}^{occ} |w_{\mathbf{R}n}\rangle \langle w_{\mathbf{R}n}|$$

F<sub>solid</sub>: Fock matrix of the solid

P<sub>solid</sub>: density matrix of all localized occupied Wannier orbitals assigned to the cluster C

## **Correlation calculation**

starting point: neutral Hartree Fock ground state  $|\Phi_{\rm HF}^N\rangle = \frac{1}{N}det(|\phi_i\rangle)$  $|\phi_i\rangle \in \{\text{proj. WO's, ...}\}$ 

reference states:

correlated states

![](_page_14_Figure_4.jpeg)

standard correlation methods can be used like CI (configuration interaction) and CC (coupled cluster) methods

BUT: these methods become easily computationally too expensive  $\implies$  further approximations are needed !

### Correlated band structure

Band energies can be recovered by diagonalizing the **k** dependent 'ionization potential' and 'electron affinity' matrices,  $I_{nn'}(\mathbf{k})$  and  $A_{nn'}(\mathbf{k})$ :

$$I_{nn'}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\mathbf{R}} I_{nn'}(\mathbf{R}) \quad \text{with}$$
$$I_{nn'}(\mathbf{R}) = \langle \Psi_{\mathbf{0}n\sigma}^{N-1} | H | \Psi_{\mathbf{R}n'\sigma}^{N-1} \rangle - E^N \delta_{\mathbf{0}\mathbf{R}} \delta_{nn'}$$

$$A_{mm'}(\mathbf{k}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\mathbf{R}} A_{mm'}(\mathbf{R}) \quad \text{with}$$
$$A_{nn'}(\mathbf{R}) = E^N \delta_{\mathbf{0R}} \delta_{mm'} - \langle \Psi_{\mathbf{0}m\sigma}^{N+1} | H | \Psi_{\mathbf{R}m'\sigma}^{N+1} \rangle$$

![](_page_16_Figure_0.jpeg)

assey University Se

September, 14th 2007

### Theoretical Background Frozen Local Hole Approximation

• generation of approximate correlated local hole states CLHS's  $|\tilde{\Psi}_a\rangle$ :

separate correlation calculation for each reference state  $|\Phi_a\rangle$  in which the localized orbital  $|a\rangle$  is kept frozen

this implies a configuration selection

Example: CI(SD) calculation:

$$|\tilde{\Psi}_a\rangle = \alpha_a |\Phi_a\rangle + \sum_{x,v} \alpha_{a,x}^v |\Phi_{a,x}^v\rangle + \sum_{x,x',v,v'} \alpha_{a,x,x'}^{v,v'} |\Phi_{a,x,x'}^{v,v'}\rangle$$

 $x. x' \in \{\bar{a}, b, \bar{b}, ...\}$ v, v' virtual orbitals

 $\bar{a}$  : electron with opposite spin to removed electron

 $\{|\Phi_{\nu}\rangle\} \longleftrightarrow \{|\Phi_{a}\rangle\}$ 

 $\{|\Psi_{\nu}\rangle\} \longleftrightarrow \{|\Psi_{a}\rangle\}$ 

FLHA

![](_page_17_Picture_8.jpeg)

September, 14th 2007

## **Theoretical Background**

#### Frozen Local Hole Approximation

1. <u>configuration spaces</u> for different hole states  $|\tilde{\Psi}_a\rangle$  are <u>overlapping</u>:

![](_page_18_Figure_3.jpeg)

2. approximated CLHS's  $|\tilde{\Psi}_a\rangle$  are <u>not orthogonal</u>

a generalized eigenvalue problem has to be solved

![](_page_18_Picture_6.jpeg)

# Applications

![](_page_19_Figure_1.jpeg)

van der Waals binding between H<sub>2</sub> units in the neutral chain

**2.** Be chains  $H-(Be)_n-H$ 

predominately covalently bound ground state

Technical details: - calculations performed with MOLPRO

- approximation compared to complete MRCI(SD) calculation
- Foster-Boys localization

![](_page_20_Figure_0.jpeg)

basis set: s cc-p VDZ

#### Quasi-degenerate variational perturbation theory:

partitioning into model space  $\mathcal M$  (spanned by HF hole configurations) and orthogonal complement,  $\hat P$  and  $\hat Q$  being the corresponding projectors, i.e.  $\hat P+\hat Q=\hat 1$ 

 $|\Psi_{\nu}
angle$  : correlated wave function  $|\Psi_{\nu}^{\mathcal{M}}
angle = \hat{P}|\Psi_{\nu}
angle$ 

define wave operator  $\hat{\Omega}$  :  $|\Psi_{\nu}\rangle = \hat{\Omega}|\Psi_{\nu}^{\mathcal{M}}\rangle$ 

![](_page_21_Picture_5.jpeg)

September, 14th 2007

 $\begin{array}{l} \mathsf{H}_{0} \text{ consists only of diagonal elements } \mathsf{F}_{\mathrm{ii}} = \varepsilon_{\mathrm{i}} \\ \text{perturbation contains the non-diagonal elements } \mathsf{F}_{\mathrm{ij}} \\ \text{as well as the usual two- and one-electron contributions} \\ \langle ij||kl\rangle_{\mathrm{and}} \quad \sum\limits_{a}^{\mathrm{occ}} \langle ia||ja\rangle \\ \end{array}$ 

wave operator in 1<sup>st</sup> order:

$$\hat{\Omega} = \sum_{c} |\Phi_{c}\rangle \langle \Phi_{c}|$$

$$+ \sum_{c} \sum_{a < b, v} |\Phi_{ab}^{v}\rangle \frac{\langle vc||ab\rangle}{\varepsilon_{v} - \varepsilon_{a} - \varepsilon_{b} + \varepsilon_{c}} \langle \Phi_{c}|$$

![](_page_22_Picture_4.jpeg)

September, 14th 2007

 $H_0$  consists only of diagonal elements  $F_{ii} = \varepsilon_i$ perturbation contains the non-diagonal elements  $F_{ij}$ as well as the usual two- and one-electron contributions  $\langle ij||kl \rangle_{and} \sum_{a}^{occ} \langle ia||ja \rangle$ wave operator in 1<sup>st</sup> order:

$$\hat{\Omega} = \sum_{c} |\Phi_{c}\rangle \langle \Phi_{c}|$$

$$+ \sum_{c} \sum_{a < b, v} |\Phi_{ab}^{v}\rangle \frac{\langle vc||ab\rangle}{\varepsilon_{v} - \varepsilon_{a} - \varepsilon_{b} + \varepsilon_{c}} \langle \Phi_{c}|$$

$$+ \sum_{c} \sum_{a < b, v < w} |\Phi_{abc}^{vw}\rangle \frac{\langle vw||ab\rangle}{\epsilon_{v} + \epsilon_{w} - \epsilon_{a} - \epsilon_{b}} \langle \Phi_{c}|$$

![](_page_23_Picture_3.jpeg)

September, 14th 2007

$$\begin{split} \hat{\Omega} &= \sum_{c} |\Phi_{c}\rangle \langle \Phi_{c}| \\ &+ \sum_{c} \sum_{a < b, v} |\Phi_{ab}^{v}\rangle \frac{\langle vc||ab\rangle}{\varepsilon_{v} - \varepsilon_{a} - \varepsilon_{b} + \varepsilon_{c}} \langle \Phi_{c}| \\ &+ \sum_{c} \sum_{a < b, v < w} |\Phi_{abc}^{vw}\rangle \frac{\langle vw||ab\rangle}{\epsilon_{v} + \epsilon_{w} - \epsilon_{a} - \epsilon_{b}} \langle \Phi_{c}| \\ \hat{\Omega}^{\text{FLH}}(h) &= |\Phi_{h}\rangle \langle \Phi_{h}| + \sum_{a \neq h, v} |\Phi_{ah}^{v}\rangle \frac{\langle vh||ah\rangle}{\varepsilon_{v} - \varepsilon_{a}} \langle \Phi_{h}| \\ &+ \sum_{a < b, v < w} |\Phi_{abh}^{vw}\rangle \frac{\langle vw||ab\rangle}{\epsilon_{v} + \epsilon_{w} - \epsilon_{a} - \epsilon_{b}} \langle \Phi_{h}| \\ &+ \sum_{a < b, v < w} |\Phi_{abh}^{vw}\rangle \frac{\langle vw||ab\rangle}{\epsilon_{v} + \epsilon_{w} - \epsilon_{a} - \epsilon_{b}} \langle \Phi_{h}| \\ \hat{\Omega} &= \sum_{h} \hat{\Omega}^{\text{FLH}}(h) + \hat{\Pi} \end{split}$$
MasseyUnversely

$$\hat{\Pi} = \sum_{a < b, v} \sum_{c \notin \{a, b\}} |\Phi_{ab}^{v}\rangle \frac{\langle vc ||ab\rangle}{\varepsilon_{v} - \varepsilon_{a} - \varepsilon_{b} + \varepsilon_{c}} \langle \Phi_{c} |$$

only contributions with three distinct occupied spin orbitals are neglected

![](_page_25_Picture_3.jpeg)

# FLHA at a glance

- FLHA is two-step procedure:
  - 1. Wave-function based correlation calculations are performed to find correlation holes around frozen local hole
  - 2. Effective Hamiltonian matrix is constructed and diagonalized; hole can delocalize and form proper Bloch state
- It was shown numerically and by perturbation theory that the FLHA performs very well
- In an analogue manner the method can be applied to anionic electron attachment states
- Further simplification possible by treating the N§1 states with a frozen local hole on Hartree-Fock level only

![](_page_26_Picture_7.jpeg)

# **Conclusions and Outlook**

Correlated band structures can be obtained by using wave-function based *ab initio* methods!

Projects:

- correlated band structure of diamond and silicon by using the FLHA
- treatment of ionic substances like MgO (  $\rightarrow$  Liviu Hozoi)

![](_page_27_Picture_5.jpeg)

![](_page_28_Picture_0.jpeg)

Te Kunenga Ki Pūrehuroa

#### Mathematical Physics from 2008

#### Study Postern / If L. Amematical Physics at No. 9 University Auckland

#### MSc and BSc(Hons)

Students will take courses in core areas of Mathematical Physics such as quantum mechanics, field theory and general relativity as well as special topics on cutting-edge physics from active researchers.

Students will engage in original research under the supervision of members of the Institute of Fundamental Sciences and the Institute of Information and Mathematical Sciences.

#### **Topics include**

Quantum Gases Nonperturbative Field Theory Nonlinear Phenomena Hadronic Physics Computational Physics

For more information view web site at http://mathphys.massey.ac.nz.

![](_page_28_Picture_9.jpeg)