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Complex networksComplex networks

Roads, power-grids, gene regulation, databases, airline 
connections, the Internet, epidemics, metabolism: all can be 
modelled as networks.

In the last decade, the network model has proved a successful 
tool in gaining deeper insight into complex systems.

A fundamental characteristic of a complex network is the 
distribution of the degree of its nodes P(k), that is the 
probability of having a node with k edges.



  

Scale-free networksScale-free networks

Considerable attention has been paid to scale-free networks, 
in which the degree distribution follows a power-law k -γ. 

Also, γ≤2 is only observed in networks that are either small, 
or in which the degree distribution has some cutoff.

To study scale-free networks, many 
generative models have been 
proposed, but no models creating 
networks with γ≤2 have been found.



  

Scale-free networks (cont.)Scale-free networks (cont.)

Notably, the mean degree of a scale-free network with γ≤2 
would diverge when the number of nodes N becomes infinite.

Thus, in scale-free networks with γ≤2 the number of links 
would scale like the square of the number of nodes, making 
the network dense. Networks with γ>2 are instead sparse.

The absence of these scale-free networks is explained by a 
discontinuous transition in their very realizability.



  

GraphicalityGraphicality

Not all the sequences of integers can be 
put in a one-to-one correspondence with 
the degrees of the nodes of a simple graph. 
Those that can are said to be graphical.

As an example, take the sequence {2, 2, 2, 
1, 1}. It is a graphical sequence because 
there is at least one simple graph in which 
the degrees of the nodes are the numbers 
of the sequence.

Conversely, there are sequences, such as 
{4, 1, 1, 1}, that are not graphical.



  

The Erdős-Gallai theoremThe Erdős-Gallai theorem

A non-increasing sequence of integers D={d0, d1, ..., dN-1} is 
graphical if and only if the sum of the elements is even and, 
for all 0≤k<N-1,

An intuitive understanding of the theorem is possible by 
noticing that the terms in the inequalities are the total number 
of stubs, the stubs in a complete graph of order k+1, and the 
maximum number of extra stubs that can be connected.

Lk=∑
i=0

k

d i≤k (k+ 1 )+ ∑
i=k+ 1

N−1

min {k+ 1,d i }=Rk .



  

A new formulationA new formulation

An efficient implementation of the theorem is possible by 
proving recurrence relations for Lk and Rk.

Then, defining x
k
=min{i: d

i
<k+1}, and k*=min{i: x

i
<i+1}, L

k
 

and R
k
 are given by:

L0=d 0 R0=N−1

Lk=Lk−1+ d k Rk={Rk−1+ xk−1 ∀k< k *

Rk−1+ 2k−d k∀k⩾k
*



  

Graphicality transitionsGraphicality transitions

The transitions can be observed via 
numeric simulations, using a fast 
implementation of the theorem based 
on the new, recurrence-relation based 
formulation.

The scaling properties of the largest 
degrees and of the number of lowest 
degree nodes in power-law sequences 
provide a theoretical explanation to 
the observation.



  

Scaling propertiesScaling properties

To investigate the scaling of the degrees one can use extreme 
value arguments to find the expression for the expected 
maximum jth degree of a proper scale-free degree sequence:

d̂ j=max {x :N ∑
k= x

N−1
k−γ

H N−1, γ

⩾ j },

Where H
N-1,γ

 is the (N-1)th generalized harmonic number of 

exponent γ.



  

Scaling properties (cont.)Scaling properties (cont.)

The expression can be used to estimate the scaling of the two 
largest degrees in a sequence when the exponent belongs to 
different ranges of values. The number of nodes with unitary 
degree can be easily found from the degree distribution.

Then, exploiting the properties of the new formulation of the 
Erdős-Gallai theorem, one can directly write the second 
Erdős-Gallai inequality and study its satisfiability.

[ (γ−1 )H N−1,γ

N
+ (N−1 )

1−γ]
1

1−γ
+ [ 2 (γ−1 )H N−1,γ

N
+ (N−1 )

1−γ]
1

1−γ
≤2N−2−

N
H N−1,γ



  

Transition mechanismTransition mechanism

Suppose we tried to construct a scale-free network with γ 
between 0 and 2, by placing the required number of edges 
sequentially from the highest to the lowest degree node.

Then, O(N) nodes of degree 1 would be used to place the 
connections involving the first node, and there would be no 
way to place all the needed edges involving the second node.

Instead, for γ<0, all but a vanishingly small fraction of nodes 
have degree of order N, and all the edges can be placed.



  

ConclusionsConclusions

In summary, we have found that the graphicality of power-
law distributed sequences undergoes two discontinuous 
transitions at the values 0 and 2 of the exponent γ.

In the limit of a large number of nodes, no network with a 
power-law degree distribution with 0≤γ≤2 can exist.

This result arises directly from fundamental mathematical 
constraints on the node degrees and is independent of the 
procedure used to generate the networks.



  

ConclusionsConclusions

This explains why all the scale-free networks observed in 
nature have γ>2, or have a cutoff in their degree distribution.

Thus, all scale-free networks are sparse, either because γ>2, 
or because they feature a cutoff.

This result is reassuring, as it implies that numerical methods, 
often needed in this kind of study, will continue to scale 
favourably with increasing system size.



  

Thank you!Thank you!


