# Boolean versus continuous dynamics on small and large model networks



TECHNISCHE UNIVERSITÄT DARMSTADT





14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 1

# Biological background: Gene regulatory networks





based on: D. Del Vecchio & E. Sontag Dynamics and Control of Synthetic Bio-molecular Networks Proceedings of Americal Control Conference, 2007

14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 2

# Biological background: Gene regulatory networks





based on: D. Del Vecchio & E. Sontag Dynamics and Control of Synthetic Bio-molecular Networks Proceedings of Americal Control Conference, 2007

## **Boolean Networks**



- · Toy-model: on-off states
- · Parallel update
- Deterministic dynamics

## **Boolean Networks**



- · Toy-model: on-off states
- · Parallel update
- Deterministic dynamics

Dynamics of individual nodes depends on update functions:

| In | Ĵ | F | $\mathcal{C}_1$ |   |   | $\mathcal{C}_2$ |   |   |   |   |   |   | $\mathcal{R}$ |   |   |   |
|----|---|---|-----------------|---|---|-----------------|---|---|---|---|---|---|---------------|---|---|---|
| 00 | 1 | 0 | 0               | 1 | 0 | 1               | 1 | 0 | 0 | 0 | 0 | 1 | 1             | 1 | 1 | 0 |
| 01 | 1 | 0 | 0               | 1 | 1 | 0               | 0 | 1 | 0 | 0 | 1 | 0 | 1             | 1 | 0 | 1 |
| 10 | 1 | 0 | 1               | 0 | 0 | 1               | 0 | 0 | 1 | 0 | 1 | 1 | 0             | 1 | 0 | 1 |
| 11 | 1 | 0 | 1               | 0 | 1 | 0               | 0 | 0 | 0 | 1 | 1 | 1 | 1             | 0 | 1 | 0 |

# Boolean and continuous dynamics for gene regulatory networks



#### **Boolean model**



 $\sigma_i = \{0, 1\}$  $\sigma_i(t+1) = F_i(\boldsymbol{\sigma}(t))$ 

# Boolean and continuous dynamics for gene regulatory networks



#### **Boolean model**

#### **Continuous model**







 $\begin{array}{rcl} mR\dot{N}A_i &=& F_i(\mathbf{P}) - \alpha mRNA_i \\ \dot{P}_i &=& \beta mRNA_i - \delta P_i \end{array}$ 

## **Hill function**

#### Regulation by single gene





#### Generalization to more inputs: Hill cubes

14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 5

## Hill cubes

Standardized method for converting any Boolean function



#### into a continuous function

| gene <sub>a</sub> | gene <sub>b</sub> | output |
|-------------------|-------------------|--------|
| 0                 | 0                 | 0      |
| 0                 | 1                 | 0      |
| 1                 | 0                 | 1      |
| 1                 | 1                 | 0      |

 $F(P_a,P_b)=f^+(P_a)\cdot f^-(P_b)$ 



D. Wittmann et al. Transforming boolean models to continuous models: Methodology and application to t-cell receptor signaling.

BMC Systems Biology, 3 (1) (2009)

## Comparison:

#### Fixed points and oscillations





## Generalized modelling approach



- Steady-state concentrations: mRNA<sub>i</sub>\*, P<sub>i</sub>\*
- Normalized state variables:  $r_i = \frac{mRNA_i}{mRNA_i^*}$ ,  $p_i = \frac{P_i}{P_i^*}$  and functions:  $\tilde{f}_j(p_i) = \frac{F_j(P_i^*p_i)}{F_i(P_i^*)}$

## Generalized modelling approach



- Steady-state concentrations: mRNA<sub>i</sub>\*, P<sub>i</sub>\*
- Normalized state variables:  $r_i = \frac{mRNA_i}{mRNA_i^*}$ ,  $p_i = \frac{P_i}{P_i^*}$  and functions:  $\tilde{f}_j(p_i) = \frac{F_j(P_i^*p_i)}{F_i(P_i^*)}$

$$J_{N=2} = \begin{pmatrix} \alpha & & \\ & \alpha & \\ & & \beta & \\ & & & \beta \end{pmatrix} \begin{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} & \begin{pmatrix} \frac{\partial \tilde{t}_a}{\partial p_a} & \frac{\partial \tilde{t}_a}{\partial p_b} \\ \frac{\partial I_b}{\partial p_a} & 0 \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix}$$

+  $\frac{\alpha}{\beta}\equiv\lambda$  : ratio of time scales between mRNA and protein dynamics

## Generalized modelling approach



- Steady-state concentrations: mRNA<sub>i</sub>\*, P<sub>i</sub>\*
- Normalized state variables:  $r_i = \frac{mRNA_i}{mRNA_i^*}$ ,  $p_i = \frac{P_i}{P_i^*}$  and functions:  $\tilde{f}_j(p_i) = \frac{F_j(P_i^*p_i)}{F_i(P_i^*)}$

$$J_{N=2} = \begin{pmatrix} \alpha & & \\ & \alpha & \\ & & \beta & \\ & & & \beta \end{pmatrix} \begin{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} & \begin{pmatrix} \frac{\partial \tilde{t}_a}{\partial p_a} & \frac{\partial \tilde{t}_a}{\partial p_b} \\ \frac{\partial I_b}{\partial p_a} & 0 \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix}$$

- $\frac{\alpha}{\beta} \equiv \lambda$  : ratio of time scales between mRNA and protein dynamics
- $\frac{\partial \tilde{f}_{j}}{\partial p_{i}} \equiv \tilde{f}_{j}p_{i} = \begin{cases} \in [0, n] & \text{if protein } i \text{ is an activator} \\ \in [-n, 0] & \text{if protein } i \text{ is an inhibitor} \end{cases}$

T. Gross, U. Feudel Generalized models as a universal approach to the analysis of nonlinear dynamical systems Physical Review E 73 (1) (2006)



• Even loops: even number of inhibitors



· Odd loops: odd number of inhibitors



Example: Three gene network

Even loop:



Odd loop:



Example: Three gene network

TECHNISCHE UNIVERSITÄT DARMSTADT

Even loop:



Odd loop:

Example: Three gene network

TECHNISCHE UNIVERSITÄT DARMSTADT

Even loop:



Odd loop:











14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 11

#### Example: Two gene network





E. Gehrmann, B. Drossel Boolean versus continuous dynamics on simple two-gene modules Physical Review E 82 (4) (2010)



#### Example: Two gene network





E. Gehrmann, B. Drossel Boolean versus continuous dynamics on simple two-gene modules Physical Review E 82 (4) (2010)



#### Example: Two-gene network









E. Gehrmann, B. Drossel Boolean versus continuous dynamics on simple two-gene modules Physical Review E 82 (4) (2010)

#### Example: Two-gene network





#### Example: Two-gene network





-4

f<sub>a</sub>p<sub>a</sub>

#### Example: Two-gene network





E. Gehrmann, B. Drossel Boolean versus continuous dynamics on simple two-gene modules Physical Review E 82 (4) (2010)



## N-gene networks with self-input or crosslink





## N-gene networks with self-input or crosslink





Example: Two-gene network with F = a NOR b





#### Example: Two-gene network with F = a NOR b





Example: Three-gene network with F = NOT b AND c





Example: Three-gene network with F = NOT b AND c





## **Conclusions Part I**



- Boolean vs. continuous dynamics
- · Conditions for oscillations in terms of
  - regulating functions' signs
  - steepness of response functions

 $\Rightarrow$  Not size and topology, but dynamical features of a network are relevant

## **Conclusions Part I**



- Boolean vs. continuous dynamics
- · Conditions for oscillations in terms of
  - regulating functions' signs
  - steepness of response functions
  - $\Rightarrow$  Not size and topology, but dynamical features of a network are relevant
    - · Hamming distance = 1: Cycle found in Boolean dynamics are in continuous model
    - Hamming distance > 1: Intermediate states must not coincide with fixed point
- Assumption: For entirely reliable trajectories the Boolean description reflects continuous dynamics

## Entirely reliable trajectories



Hamming distance h = 1 between to subsequent states: Only one nodes flips per time step



Our interest is best possible case: Entirely reliable trajectories with Hamming distance h = 1

> T. P. Peixoto, B. Drossel Boolean networks with reliable dynamics. Physical Review E **80** (5) (2009)

Three general types of dynamics under random update schedule



Entirely reliable trajectories Hamming distance h = 1





14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 20

Entirely reliable trajectories Hamming distance h = 1





Entirely reliable trajectories Hamming distance h = 1





## Method







#### TECHNISCHE UNIVERSITÄT DARMSTADT

## **Results: Hamming distance** *h* = 1



Variation: Number of nodes N(with L = 2N)



TECHNISCHE UNIVERSITÄT DARMSTADT

### **Results: Hamming distance** *h* = 1







Variation: Hamming distance h(N = 10, L = 20)

#### 14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 23

### **Results: Hamming distance** h > 1

Features of robust trajectories [1]

- "Catcher states": Only one node changes its state
- Activity states are kept for an extended time

[1] S. Braunewell & S. Bornholdt Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity Journal of Theoretical Biology, 2007







# **Results: Features of consistent trajectories** Duration of node states must not be too short



N = 10, L = 20, h = 1.1

```
9 ... 1 1 1 1 1 1 1 1 1 1 ...
  ... 0 0 0 1 1 1 1 1 1 1 ...
8
7
  ... 0 0 0 0 0 0 0 0 0 0 ...
  ... 0111011110...
6
5
  ... 0 0 0 0 0 1 1 1 0 0 ...
4
   ... 0 0 0 0 0 0 0 1 1 1 ...
3
  ... 0 0 0 0 0 0 1 1 1 1 ...
2
  ... 0 0 0 0 0 0 0 0 0 ...
1 ... 0 0 0 0 0 0 0 0 0 ...
  ... 1 1 0 0 0 0 0 0 0 0 ...
                          Time
```

Example: Duration of node states too short and simultaneous update of 2 nodes  $\Rightarrow$  No oscillations in continuous model

14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 24

## Results: Features of consistent trajectories Duration of node states must not be too short





Example: Duration of node states too short and simultaneous update of 2 nodes  $\Rightarrow$  No oscillations in continuous model

14.05.2012 | Eva Christina Ackermann and Barbara Drossel | Technische Universität Darmstadt | 24

## **Conclusions Part II**



- · Entirely reliable trajectories
  - $\Rightarrow$  Boolean description reflects continuous dynamics
- Increased Hamming distance
  - ⇒ Agreement of continuous dynamics with Boolean dynamics becomes worse
- · Features of robust trajectories
  - Catcher states
  - Duration of node states are not too short
- Biological relevance: Processes in biological networks must be reliable despite fluctuations affecting the timing of different steps

Thank you for your attention



## Thank you for your attention



Special Thanks to ...

Eva Ackermann (Gehrmann)

Dr. Tiago Peixoto (University of Bremen)

Torsten Pfaff

Eva Marie Weiel