Dynamics of Voter Models on Complex & Simple Networks

Sid Redner (physics.bu.edu/~redner)
Mathematical Physics of Complex Networks (MAPCON), MPI Dresden, May 14-18, 2012

T. Antal (BU→Edinburgh), V. Sood (BU→Lausanne), D. Volovik (BU)
NSF DMR0906504
Dynamics of Voter Models on Complex & Simple Networks

Sid Redner (physics.bu.edu/~redner)

Mathematical Physics of Complex Networks (MAPCON), MPI Dresden, May 14-18, 2012

T. Antal (BU→Edinburgh), V. Sood (BU→Lausanne), D. Volovik (BU)

NSF DMR0906504

The classic voter model

3 basic results
Dynamics of Voter Models on Complex & Simple Networks

Sid Redner (physics.bu.edu/~redner)
Mathematical Physics of Complex Networks (MAPCON), MPI Dresden, May 14-18, 2012

T. Antal (BU → Edinburgh), V. Sood (BU → Lausanne), D. Volovik (BU)
NSF DMR0906504

The classic voter model
3 basic results

Voting on complex networks
new conservation law
two time-scale route to consensus
short consensus time

T. Antal, V. Sood
Dynamics of Voter Models on Complex & Simple Networks

Sid Redner (physics.bu.edu/~redner)

Mathematical Physics of Complex Networks (MAPCON), MPI Dresden, May 14-18, 2012

T. Antal (BU→Edinburgh), V. Sood (BU→Lausanne), D. Volovik (BU)

NSF DMR0906504

The classic voter model
3 basic results

Voting on complex networks
new conservation law
two time-scale route to consensus
short consensus time

Confident/Reinforced voting
two time-scale dynamics
symmetry breaking clustering
0. Binary voter variable at each site i
0. Binary voter variable at each site i

1. Pick a random voter
0. Binary voter variable at each site i
1. Pick a random voter
2. Assume state of randomly-selected neighbor
 individual has no self-confidence & adopts neighbor's state
Example update:

0. Binary voter variable at each site i
1. Pick a random voter
2. Assume state of randomly-selected neighbor

individual has no self-confidence & adopts neighbor’s state
Classic Voter Model

Example update:

0. Binary voter variable at each site i
1. Pick a random voter
2. Assume state of randomly-selected neighbor

individual has no self-confidence & adopts neighbor’s state
Example update:

0. Binary voter variable at each site i
1. Pick a random voter
2. Assume state of randomly-selected neighbor

individual has no self-confidence & adopts neighbor's state

proportional rule

Clifford & Sudbury (1973)
Holley & Liggett (1975)
0. Binary voter variable at each site i
1. Pick a random voter
2. Assume state of randomly-selected neighbor individual has no self-confidence & adopts neighbor’s state
3. Repeat 1 & 2 until consensus necessarily occurs in a finite system

Example update:

proportional rule
Voter Model Evolution

random initial condition:

Dornic et al. (2001)

t=4 t=16 t=64 t=256

droplet initial condition:
Voter versus Ising Evolution
Voter Model & Cousins
Voter Model & Cousins

Voter Model: Tell me how to vote

lemming
Voter Model & Cousins

Voter Model: Tell me how to vote

Invasion Process: I tell you how to vote
Voter Model & Cousins

Voter Model: Tell me how to vote

Invasion Process: I tell you how to vote

Link Dynamics: Pick two disagreeing agents and change one at random
Voter Model & Cousins

Voter Model: Tell me how to vote

Invasion Process: I tell you how to vote

Link Dynamics: Pick two disagreeing agents and change one at random

identical on lattices, *distinct* on degree-heterogeneous graphs

Lattice Voter Model: 3 Basic Properties
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability $\mathcal{E}(\rho_0)$
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability $\mathcal{E}(\rho_0)$

Evolution of a single active link:
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability \[\mathcal{E}(\rho_0) = \rho_0 \]

Evolution of a single active link: average magnetization conserved
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability \(\mathcal{E}(\rho_0) = \rho_0 \)

Evolution of a single active link:

2. Two-Spin Correlations
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability \(\mathcal{E}(\rho_0) = \rho_0 \)

Evolution of a single active link:

2. Two-Spin Correlations

\[
\frac{\partial c_2(r, t)}{\partial t} = \nabla^2 c_2(r, t)
\]

\(c_2(r = 0, t) = 1 \)

\(c_2(r > 0, t = 0) = 0 \)
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability \(\mathcal{E}(\rho_0) = \rho_0 \)

Evolution of a single active link:

2. Two-Spin Correlations

- For \(d > 2 \):
 \[
 c(r,t) = 1 - (a/r)^{d-2}
 \]

- For \(d \leq 2 \):
 \[
 \frac{\partial c_2(r,t)}{\partial t} = \nabla^2 c_2(r,t)
 \]
 \[
 c_2(r=0,t) = 1 \quad c_2(r > 0, t=0) = 0
 \]
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability $\mathcal{E}(\rho_0) = \rho_0$

Evolution of a single active link:

2. Two-Spin Correlations

$$\partial c_2(r, t) \over \partial t = \nabla^2 c_2(r, t)$$

- $d > 2$
 - $c_2(r = 0, t) = 1$
 - $c_2(r > 0, t = 0) = 0$

- $d \leq 2$

3. Consensus Time
Lattice Voter Model: 3 Basic Properties

1. Final State (Exit) Probability \(\mathcal{E}(\rho_0) = \rho_0 \)

Evolution of a single active link:

2. Two-Spin Correlations

\[
\frac{\partial c_2(r, t)}{\partial t} = \nabla^2 c_2(r, t)
\]

\(c_2(r = 0, t) = 1 \)

\(c_2(r > 0, t = 0) = 0 \)

3. Consensus Time

<table>
<thead>
<tr>
<th>dimension</th>
<th>consensus time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{2}{N})</td>
</tr>
<tr>
<td>2</td>
<td>(N \ln N)</td>
</tr>
<tr>
<td>>2</td>
<td>(N)</td>
</tr>
</tbody>
</table>
K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
illustrative example:

complete bipartite graph

Voter Model on Complex Networks

\[dN_a = \frac{a}{a + b} \left[\frac{a - N_a}{a} \frac{N_b}{b} - \frac{N_a}{a} \frac{b - N_b}{b} \right] \]

\[dN_b = \frac{b}{a + b} \left[\frac{b - N_b}{b} \frac{N_a}{a} - \frac{N_b}{b} \frac{a - N_a}{a} \right] \]

illustrative example:
complete bipartite graph

K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)
Voter Model on Complex Networks

K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)

illustrative example: complete bipartite graph

\[
dN_a = \frac{a}{a+b} \left[\frac{a - N_a}{a} \frac{N_b}{b} - \frac{N_a}{a} \frac{b - N_b}{b} \right]
\]

\[
dN_b = \frac{b}{a+b} \left[\frac{b - N_b}{b} \frac{N_a}{a} - \frac{N_b}{b} \frac{a - N_a}{a} \right]
\]

pick site on a sublattice
Voter Model on Complex Networks

K. Suckeck, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)

illustrative example: complete bipartite graph

differential equations:

\[dN_a = \frac{a}{a + b} \left[\frac{a - N_a}{a} \frac{N_b}{b} - \frac{N_a}{a} \frac{b - N_b}{b} \right] \]

\[dN_b = \frac{b}{a + b} \left[\frac{b - N_b}{b} \frac{N_a}{a} - \frac{N_b}{b} \frac{a - N_a}{a} \right] \]
Voter Model on Complex Networks

K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)

illustrative example: complete bipartite graph

\[dN_a = \frac{a}{a + b} \left[\frac{a - N_a}{a} \cdot \frac{N_b}{b} - \frac{N_a}{a} \cdot \frac{b - N_b}{b} \right] \]

\[dN_b = \frac{b}{a + b} \left[\frac{b - N_b}{b} \cdot \frac{N_a}{a} - \frac{N_b}{b} \cdot \frac{a - N_a}{a} \right] \]
Voter Model on Complex Networks

K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)

illustrative example: complete bipartite graph

\[dN_a = \frac{a}{a+b} \left[\frac{a - N_a}{a} \frac{N_b}{b} - \frac{N_a}{a} \frac{b - N_b}{b} \right] \]

\[dN_b = \frac{b}{a+b} \left[\frac{b - N_b}{b} \frac{N_a}{a} - \frac{N_b}{b} \frac{a - N_a}{a} \right] \]

Subgraph densities: \(\rho_a = N_a/a, \rho_b = N_b/b \) \(dt = 1/(a+b) \)

\[\rho_{a,b}(t) = \frac{1}{2} [\rho_{a,b}(0) - \rho_{b,a}(0)] e^{-2t} + \frac{1}{2} [\rho_a(0) + \rho_b(0)] \]

\[\rightarrow \frac{1}{2} [\rho_a(0) + \rho_b(0)] \]
Voter Model on Complex Networks

K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (2005)

Illustrative example: complete bipartite graph

\[
\begin{align*}
\text{pick site on a sublattice} & \quad \text{pick ↓ on a} \quad \text{pick ↑ on b sublattice} \\
\end{align*}
\]

\[
\begin{align*}
dN_a &= \frac{a}{a+b} \left[\frac{a-N_a}{a} \frac{N_b}{b} - \frac{N_a b - N_b}{a} \right] \\
dN_b &= \frac{b}{a+b} \left[\frac{b-N_b}{b} \frac{N_a}{a} - \frac{N_b a - N_a}{b} \right]
\end{align*}
\]

Subgraph densities: \(\rho_a = N_a/a, \ \rho_b = N_b/b \)

\[
\rho_{a,b}(t) = \frac{1}{2} [\rho_{a,b}(0) - \rho_{b,a}(0)] e^{-2t} + \frac{1}{2} [\rho_a(0) + \rho_b(0)]
\]

\[
\rightarrow \frac{1}{2} [\rho_a(0) + \rho_b(0)] \quad \text{magnetization not conserved}
\]
Voter Model on Complex Networks

mechanism for non-conservation
Voter Model on Complex Networks

mechanism for non-conservation
Voter Model on Complex Networks

mechanism for non-conservation

high degree; few nodes
→ changes rarely
Voter Model on Complex Networks

mechanism for non-conservation

- High degree; few nodes → changes rarely
- Low degree; many nodes → changes often
Voter Model on Complex Networks

mechanism for non-conservation

“flow” from high degree to low degree
New Conservation Law

- low degree → changes often
- high degree → changes rarely
New Conservation Law

low degree → changes often

high degree → changes rarely

to compensate the different rates:

degree-weighted 1st moment:

$$\omega = \frac{1}{\mu_1} \sum_k k n_k \rho_k$$

$$\mu_1 = \text{av. degree}$$

$$n_k = \text{frac. nodes of degree } k$$

$$\rho_k = \text{frac. ↑ on nodes of degree } k$$
New Conservation Law

low degree
→ changes often

high degree
→ changes rarely

to compensate the different rates:

degree-weighted 1st moment:

\[\omega = \frac{1}{\mu_1} \sum_k k n_k \rho_k \]

\[\mu_1 = \text{av. degree} \]
\[n_k = \text{frac. nodes of degree } k \]
\[\rho_k = \text{frac. ↑ on nodes of degree } k \]

\[\text{conserved!} \]
Invasion Process on Complex Networks

Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

high degree: changes often
Invasion Process on Complex Networks

Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

high degree: changes often

low degree; changes rarely
Invasion Process on Complex Networks

Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

high degree: changes often

low degree; changes rarely

“flow” from low degree to high degree
Invasion Process on Complex Networks

Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

high degree: **changes often**
low degree; **changes rarely**

“flow” from **low** degree to **high** degree

degree-weighted inverse moment

$$\omega_{-1} = \frac{1}{\mu_1} \sum_k k^{-1} n_k \rho_k$$

conserved!
Exit Probability on Complex Graphs

\[E(\omega) = \omega \]
Exit Probability on Complex Graphs

\[\mathcal{E}(\omega) = \omega \]

Extreme case: star graph

N nodes: degree 1
1 node: degree N
Exit Probability on Complex Graphs

\[\mathcal{E}(\omega) = \omega \]

Extreme case: star graph

N nodes: degree 1
1 node: degree N

\[\omega = \frac{1}{\mu_1} \sum_k k n_k \rho_k = \frac{1}{2} \]

Final state: all 1 with prob. 1/2!
Route to Consensus on Complex Graphs
Route to Consensus on Complex Graphs

A complete bipartite graph with a sites of degree a and b sites of degree b.

$t \lesssim 1$
Route to Consensus on Complex Graphs

- **Complete Bipartite Graph**
 - Degree a sites
 - Degree b sites

- **Two-Clique Graph**
 - N = 10000, C links/node

- $t \lessapprox 1$

- $c = 100$

- $c = 1$
Consensus Time Evolution Equation
Consensus Time Evolution Equation

warmup: complete graph

\[T(\rho) \equiv \text{av. consensus time starting with density } \rho \]
Consensus Time Evolution Equation

warmup: complete graph

$T(\rho) \equiv$ av. consensus time starting with density ρ

\[
T(\rho) \begin{array}{c} = \\
= \mathcal{R}(\rho) [T(\rho + d\rho) + dt] + \mathcal{L}(\rho) [T(\rho - d\rho) + dt] + [1 - \mathcal{R}(\rho) - \mathcal{L}(\rho)] [T(\rho) + dt]
\end{array}
\]
Consensus Time Evolution Equation

warmup: complete graph

\[T(\rho) \equiv \text{av. consensus time starting with density } \rho \]

\[
T(\rho) = \mathcal{R}(\rho)[T(\rho + d\rho) + dt] + \mathcal{L}(\rho)[T(\rho - d\rho) + dt] + [1 - \mathcal{R}(\rho) - \mathcal{L}(\rho)][T(\rho) + dt]
\]

\[\mathcal{R}(\rho) \equiv \text{prob}(\downarrow\uparrow\rightarrow\uparrow\uparrow) = \rho(1 - \rho) \]
Consensus Time Evolution Equation

warmup: complete graph

\(T(\rho) \equiv \text{av. consensus time starting with density } \rho \)

\[
T(\rho) = \mathcal{R}(\rho)[T(\rho + d\rho) + dt] \\
+ \mathcal{L}(\rho)[T(\rho - d\rho) + dt] \\
+ [1 - \mathcal{R}(\rho) - \mathcal{L}(\rho)][T(\rho) + dt]
\]

\(\mathcal{R}(\rho) \equiv \text{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \)

\(\mathcal{L}(\rho) \equiv \text{prob}(\uparrow \downarrow \rightarrow \downarrow \downarrow) \)

\(= \rho(1 - \rho) \)
Consensus Time Evolution Equation

warmup: complete graph

\[T(\rho) \equiv \text{av. consensus time starting with density } \rho \]

\[
T(\rho) = \mathcal{R}(\rho)[T(\rho + d\rho) + dt] \\
+ \mathcal{L}(\rho)[T(\rho - d\rho) + dt] \\
+ [1 - \mathcal{R}(\rho) - \mathcal{L}(\rho)][T(\rho) + dt]
\]

\[
\mathcal{R}(\rho) \equiv \text{prob}(\downarrow \uparrow \rightarrow \uparrow \uparrow) \\
\mathcal{L}(\rho) \equiv \text{prob}(\uparrow \downarrow \rightarrow \downarrow \downarrow) \\
\]

\[= \rho(1 - \rho) \]
Consensus Time on Complete Graph

\[T(\rho) = R(\rho)[T(\rho + d\rho) + dt] \]
\[+ L(\rho)[T(\rho - d\rho) + dt] \]
\[+ [1 - R(\rho) - L(\rho)] [T(\rho) + dt] \]

continuum limit:

\[T'' = - \frac{N}{\rho(1 - \rho)} \]
Consensus Time on Complete Graph

\[T(\rho) = R(\rho)[T(\rho + d\rho) + dt] \]
\[+ L(\rho)[T(\rho - d\rho) + dt] \]
\[+ [1 - R(\rho) - L(\rho)][T(\rho) + dt] \]

continuum limit: \[T'' = - \frac{N}{\rho(1 - \rho)} \]
solution: \[T(\rho) = -N \left[\rho \ln \rho + (1 - \rho) \ln(1 - \rho) \right] \]
Consensus Time on Heterogeneous Networks

\[T(\{\rho_k\}) \equiv \text{av. consensus time starting with density } \rho_k \text{ on nodes of degree } k \]

\[T(\{\rho_k\}) = \sum_k R_k(\{\rho_k\})[T(\{\rho_k^+\}) + dt] \]

\[+ \sum_k L_k(\{\rho_k\})[T(\{\rho_k^-\}) + dt] \]

\[+ \left[1 - \sum_k [R_k(\{\rho_k\}) + L_k(\{\rho_k\})] \right] [T(\{\rho_k\}) + dt] \]

\[R_k(\{\rho_k\}) = \text{prob}(\rho_k \rightarrow \rho_k^+) \quad \text{and} \quad L_k(\{\rho_k\}) = n_k \rho_k (1 - \omega) \]

\[= \frac{1}{N} \sum_x \sum_x^\prime \frac{1}{k_x} \sum_{y} P(\downarrow, \rightarrow, \uparrow) \]

\[= n_k \omega (1 - \rho_k) \]
Consensus Time on Heterogeneous Networks

continuum limit:

$$\sum_k \left[(\omega - \rho_k) \frac{\partial T}{\partial \rho_k} + \frac{\omega + \rho_k - 2\omega \rho_k}{2N n_k} \frac{\partial^2 T}{\partial \rho_k^2} \right] = -1$$
Molloy-Reed Configuration Model

\[n_k \sim k^{-2.5}, \quad \mu_1 = 8 \]
Consensus Time on Heterogeneous Networks

continuum limit:

\[
\sum_k \left[(\omega - \rho_k) \frac{\partial T}{\partial \rho_k} + \frac{\omega + \rho_k - 2\omega \rho_k}{2N n_k} \frac{\partial^2 T}{\partial \rho_k^2} \right] = -1
\]

now use \(\rho_k \to \omega \quad \forall k \)

and \(\frac{\partial}{\partial \rho_k} = \frac{\partial \omega}{\partial \rho_k} \frac{\partial}{\partial \omega} = \frac{kn_k}{\mu_1} \frac{\partial}{\partial \omega} \)
Consensus Time on Heterogeneous Networks

continuum limit:

\[
\sum_k \left[(\omega - \rho_k) \frac{\partial T}{\partial \rho_k} + \frac{\omega + \rho_k - 2\omega \rho_k}{2N n_k} \frac{\partial^2 T}{\partial \rho_k^2} \right] = -1
\]

now use \(\rho_k \to \omega \quad \forall k \)

and

\[
\frac{\partial}{\partial \rho_k} = \frac{\partial \omega}{\partial \rho_k} \frac{\partial}{\partial \omega} = \frac{kn_k}{\mu_1} \frac{\partial}{\partial \omega}
\]

to give

\[
\frac{\partial^2 T}{\partial \omega^2} = -\frac{N \mu_1^2 / \mu_2}{\omega(1 - \omega)}
\]
Consensus Time on Heterogeneous Networks

continuum limit:

$$\sum_k \left[(\omega - \rho_k) \frac{\partial T}{\partial \rho_k} + \frac{\omega + \rho_k - 2\omega \rho_k}{2Nn_k} \frac{\partial^2 T}{\partial \rho_k^2} \right] = -1$$

now use $$\rho_k \to \omega \quad \forall k$$

and

$$\frac{\partial}{\partial \rho_k} = \frac{\partial \omega}{\partial \rho_k} \frac{\partial}{\partial \omega} = \frac{kn_k}{\mu_1} \frac{\partial}{\partial \omega}$$

to give

$$\frac{\partial^2 T}{\partial \omega^2} = -\frac{N \mu_1^2/\mu_2}{\omega(1 - \omega)}$$

same as

$$T'' = -\frac{N}{\rho(1 - \rho)}$$

with effective size $$N_{\text{eff}} = N \frac{\mu_1^2}{\mu_2}$$
Consensus Time for Power-Law Degree Distribution \(n_k \sim k^{-\nu} \)

Voter model:

\[
T_N \propto N_{\text{eff}} = N \frac{\mu_1^2}{\mu_2} \sim \begin{cases}
N & \nu > 3 \\
N/ \ln N & \nu = 3 \\
N^2(\nu-2)/(\nu-1) & 2 < \nu < 3 \\
(\ln N)^2 & \nu = 2 \\
\mathcal{O}(1) & \nu < 2
\end{cases}
\]
Consensus Time for Power-Law Degree Distribution \(n_k \sim k^{-\nu} \)

Voter model:

\[
T_N \propto N_{\text{eff}} = N \frac{\mu_1^2}{\mu_2} \sim \begin{cases}
N & \nu > 3 \\
N/\ln N & \nu = 3 \\
N^{2(\nu-2)/(\nu-1)} & 2 < \nu < 3 \\
(\ln N)^2 & \nu = 2 \\
\mathcal{O}(1) & \nu < 2
\end{cases}
\]

fast (<N) consensus
Consensus Time for Power-Law Degree Distribution $n_k \sim k^{-\nu}$

Voter model:

$$T_N \propto N_{\text{eff}} = N \frac{\mu_1^2}{\mu_2} \sim \begin{cases}
N & \nu > 3 \\
N/\ln N & \nu = 3 \\
N^2(\nu-2)/(\nu-1) & 2 < \nu < 3 \\
(\ln N)^2 & \nu = 2 \\
\mathcal{O}(1) & \nu < 2
\end{cases}$$

Invasion process:

$$T_N \sim \begin{cases}
N & \nu > 2, \\
N\ln N & \nu = 2, \\
N^{2-\nu} & \nu < 2.
\end{cases}$$

Fast (\textless N) consensus
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)

unsure

confident

extremal
Confident/Reinforced Voter Model

motivation: Centola (2010)
related work: Dall’Asta & Castellano (2007)

unsure

confident

marginal
Simplest case: 2 internal states

densities \(P_0, P_1, M_0, M_1 \),
with \(P_0 + P_1 + M_0 + M_1 = 1 \)
Simplest case: 2 internal states

densities P_0, P_1, M_0, M_1, with $P_0 + P_1 + M_0 + M_1 = 1$

basic processes:

<table>
<thead>
<tr>
<th>Process</th>
<th>$M_1 P_1$</th>
<th>$P_0 P_1$</th>
<th>$M_1 P_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow</td>
<td>$P_0 P_1$</td>
<td>$P_0 P_1$</td>
<td>$M_1 P_1$</td>
</tr>
<tr>
<td>or</td>
<td>$M_0 M_1$</td>
<td>$P_0 P_0$</td>
<td>$P_0 P_0$</td>
</tr>
</tbody>
</table>

rate equations/mean-field limit:

$$\dot{P}_0 = -M_0 P_0 + M_1 P_1 + P_0 P_1$$

$$\dot{P}_1 = M_0 P_0 - M_1 P_1 - P_0 P_1 + (M_1 P_0 - M_0 P_1)$$

similarly for M_0, M_1
special soluble case: symmetric limit

\[P_0 + P_1 = M_0 + M_1 = \frac{1}{2} \]

\[\dot{P}_0 = -M_0 P_0 + M_1 P_1 + P_0 P_1 \]

\[\dot{P}_1 = M_0 P_0 - M_1 P_1 - P_0 P_1 + (M_1 P_0 - M_0 P_1) \]
special soluble case: symmetric limit

\[P_0 + P_1 = M_0 + M_1 = \frac{1}{2} \]

\[\dot{P}_0 = -M_0 P_0 + M_1 P_1 + P_0 P_1 \]
\[\dot{P}_1 = M_0 P_0 - M_1 P_1 - P_0 P_1 + (M_1 P_0 - M_0 P_1) \]

\[\rightarrow \quad \dot{P}_0 = -\dot{P}_1 = P_0^2 + \frac{1}{2} P_0 - \frac{1}{4} \]
\[= -(P_0 - \lambda_+)(P_0 - \lambda_-) \]
\[\lambda_\pm = \frac{1}{4}(-1\pm\sqrt{5}) \approx 0.309, -0.809 \]

solution:

\[\frac{P_0(t) - \lambda_+}{P_0(t) - \lambda_-} = \frac{P_0(0) - \lambda_+}{P_0(0) - \lambda_-} e^{-(\lambda_+ - \lambda_-)t} \]
near symmetric limit:

\[P_0 = \frac{1}{2} + 10^{-5}, \quad M_0 = \frac{1}{2} - 10^{-5}, \quad P_1 = M_1 = 0 \]
near symmetric limit:

\[P_0 = \frac{1}{2} + 10^{-5}, \quad M_0 = \frac{1}{2} - 10^{-5}, \quad P_1 = M_1 = 0 \]
near symmetric limit:

\[P_0 = \frac{1}{2} + 10^{-5}, \quad M_0 = \frac{1}{2} - 10^{-5}, \quad P_1 = M_1 = 0 \]
near symmetric limit: composition tetrahedron
Consensus Time in Two Dimensions

T_N vs N graph with logarithmic scale.
Consensus Time Distribution

P(T_N) vs T

Y-axis: 10^-2 to 10^-7
X-axis: 0 to 50000

Graph shows the distribution of consensus time as a function of time.
Consensus Time Distribution

$P(T_N)$ vs T
Consensus Time Distribution

\[P(T_N) \]

![Graph showing the distribution of consensus times with droplets in the image.](image-url)
Consensus Time Distribution

\[P(T_N) \]

- Droplets
- Stripes
two time scales control approach to consensus

see also Spirin, Krapivsky, SR (2001), Chen & SR (2005)

Ising model Majority vote model
Summary & Outlook
Summary & Outlook

Voter model:
paradigmatic, soluble, hopelessly naive
Summary & Outlook

Voter model:
paradigmatic, soluble, hopelessly naive

Voter model on complex networks:
new conservation law
route to consensus sensitive to network structure
fast consensus for broad degree distributions
Summary & Outlook

Voter model:
paradigmatic, soluble, hopelessly naive

Voter model on complex networks:
new conservation law
route to consensus sensitive to network structure
fast consensus for broad degree distributions

Confident voting on simple networks:
two time-scale route to consensus
fast consensus (ln N vs. N) in mean-field limit
slow consensus on lattices & networks
Summary & Outlook

Voter model:
paradigmatic, soluble, hopelessly naive

Voter model on complex networks:
new conservation law
route to consensus sensitive to network structure
fast consensus for broad degree distributions

Confident voting on simple networks:
two time-scale route to consensus
fast consensus ($\ln N$ vs. N) in mean-field limit
slow consensus on lattices & networks

Ongoing:
“churn” rather than consensus
heterogeneity of real people
positive and negative social interactions \rightarrow social balance