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random initial condition:

 Voter Model Evolution Dornic et al. (2001)
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droplet initial condition:
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Invasion Process on Complex Networks
 Antal, Sood, SR (2005, 06, 08)
Castellano (2005)

high degree: changes often

low degree; changes rarely

“flow” from low degree to high degree

degree-weighted 
inverse moment conserved!ω−1 =

1
µ1

�

k

k−1nk ρk
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Exit Probability on Complex Graphs
E(ω) = ω

Extreme case: star graph
0

0

0

0

0

0
0

0

0

0

0

0

1

N nodes: degree 1
1  node:  degree N

Final state: all 1 with prob. 1/2!

ω =
1
µ1

�

k

k nkρk =
1
2



Route to Consensus on Complex Graphs



Route to Consensus on Complex Graphs

complete bipartite graph

degree a

a sites
degree b

b sites

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ b

ρa

t<
∼

1



Route to Consensus on Complex Graphs

complete bipartite graph

degree a

a sites
degree b

b sites

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ b

ρa

t<
∼

1

c = 1

c = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ b

ρa

two-clique graph

c

N=10000, C links/node



Consensus Time Evolution Equation



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ



Consensus Time Evolution Equation

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
= ρ(1− ρ)ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

R

ρ0



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
L(ρ) ≡ prob(↑↓→↓↓)

= ρ(1− ρ)
ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

RL

0



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
L(ρ) ≡ prob(↑↓→↓↓)

= ρ(1− ρ)
ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

RL
1−R−L

0



Consensus Time on Complete Graph

continuum limit: T �� = − N
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Consensus Time on Complete Graph

continuum limit: T �� = − N

ρ(1− ρ)

T (ρ) = −N [ρ ln ρ + (1− ρ) ln(1− ρ)]

solution:

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]



Consensus Time on Heterogeneous Networks

T ({ρk}) ≡ av. consensus time starting with density ρk

on nodes of degree k

T ({ρk}) =
�

k

Rk({ρk})[T ({ρ+
k }) + dt]

+
�

k

Lk({ρk})[T ({ρ−k }) + dt]

+
�
1−

�

k

[Rk({ρk}) + Lk({ρk})]
�
[T ({ρk}) + dt]

Lk({ρk}) = nkρk(1− ω)Rk({ρk}) = prob(ρk → ρ+
k )

=
1
N

��

x

1
kx

�

y

P (↓ ,−− , ↑)

= nkω(1− ρk)
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k

�
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Consensus Time on Heterogeneous Networks
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]
fast (<N)
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nk ∼ k
−νDistribution

TN ∝ Neff = N
µ2
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µ2
∼


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

N ν > 3
N/ lnN ν = 3
N2(ν−2)/(ν−1) 2 < ν < 3
(lnN)2 ν = 2
O(1) ν < 2

Voter model:

lnvasion process:

TN ∼






N ν > 2,

N lnN ν = 2,

N2−ν ν < 2.
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rate equations/mean-field limit:

similarly for M₀, M₁

Ṗ0 = −M0P0 + M1P1 + P0P1

Ṗ1 = M0P0 −M1P1 − P0P1 + (M1P0−M0P1)

M1 P1 → P0P1 or M0M1 M0 P0 → M0P1 or M1P0

P0 P1 → P0P1 or P0P0 M0M1 → M0M1 or M0M0

M1 P0 → M1P1 or P0P0 M0 P1 → M1P1 or M0M0

basic processes:
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special soluble case:  symmetric limit
P0 + P1 = M0 + M1 = 1

2

Ṗ0 = −M0P0 + M1P1 + P0P1

Ṗ1 = M0P0 −M1P1 − P0P1 + (M1P0−M0P1)

→ Ṗ0 = −Ṗ1 = P 2
0 + 1

2P0 − 1
4

= −(P0 − λ+)(P0 − λ−)
λ± = 1

4 (−1±
√

5) ≈ 0.309,−0.809

solution: P0(t)− λ+

P0(t)− λ−
=

P0(0)− λ+

P0(0)− λ−
e−(λ+−λ−)t
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near symmetric limit:  composition tetrahedron
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two time scales control approach to consensus
see also Spirin, Krapivsky, SR (2001), Chen & SR (2005)

Ising model Majority vote model
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Summary & Outlook
Voter model: 

paradigmatic, soluble, hopelessly naive

Voter model on complex networks:
new conservation law
route to consensus sensitive to network structure
fast consensus for broad degree distributions

Ongoing:  
“churn” rather than consensus
heterogeneity of real people
positive and negative social interactions → social balance

Confident voting on simple networks:
two time-scale route to consensus
fast consensus (ln N vs. N) in mean-field limit
slow consensus on lattices & networks


