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Background

One of the fundamental themes in biology is the hierarchical organization of its constituents. At higher levels of a hierarchy new properties
emerge due to the complex interaction of constituents at lower levels. Determining if and how genetic regulatory networks are hierarchically
structured would aid in understanding the properties and functional processes of the networks. With the increasing availability of genetic
expression data, developing methods to infer and detect functional communities within the network is an important goal of systems biology.
Unfortunately, noise in expression data creates variability in the inferred network and the stochastic nature of community detection creates
variability in the functional communities detected with existing methods.
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ldentifying communities and their hierarchical
organization with an ensemble approach
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Community structure is robust to experimental noise

To test the effect of noise on community structure we created several
noisy datasets. Each experiment in the noisy dataset contained an i
expression level for gene X chosen randomly from a normal .“ e QMM
distribution with mean m(X) and standard error c.o(X). A correlation — N ) m 1
matrix for an ensemble of 10 community partitions detected at each .||” ‘ !”””m“
noise level ¢ and threshold f_. = 2 was created. We found that noise — R —— = —ua

acts conservatively, decreasing the size of each core community
rather than causing association of genes into new communities.

Change in core community structure as noise is increased from c¢=0 to c=4
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