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e Expected phase diagram for a spin 1/2 Fermi gas
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e How to detect the phase transition 7

e Our proposal: interferometric detection
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—set up 1: with a matter wave beam splitter

—set up 2: without a matter wave beam splitter
e The unitary quantum gas

—an exact time dependent solution



EXPECTED PHASE DIAGRAM FOR A SPIN 1/2 FERMI GAS

Good news from current experiments:

e scattering length a changed at will with Feshbach reso-
nance

e Spin 1/2 Fermi gas remains stable

Current theories:

e Condensation of pairs governed by the order parameter
pair

lim g7 (r) >0

r——+00

with pair first order coherence function

g™ () = (DL ()] ()2 (0)4h(0)).



EXPECTED PHASE DIAGRAM
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QUANTUM MONTE CARLO IN 1D
Stochastic Hartree-Fock ansatz of Juillet and Chomaz (2002)

In between weak /strong interactions: h?|g|/mp ~ 1

1D Quantum Monte Carlo
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OPPOSITE SPIN DENSITY-DENSITY CORRELATIONS
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e not an indicator of long range order
e not well predicted by BCS theory



HOW TO DETECT THE TRANSITION ? (1)

1. Pairing:
e measure the gap: Zoller-Torma, expt: Grimm

e pairing in momentum space: Lukin

2. Superfluidity:

e anisotropy in ballistic expansion: Stringari-NMenotti, expt:
Thomas

e frequency and damping of collective modes: Baranov,
Bruun, Stringari, expt: Grimm

e linear response to rotation: Schuck, Stringari ; quantized
vortices

e damping of motion of test particle: Minguzzi-Castin



HOW TO DETECT THE TRANSITION ? (2)

3. Condensation of pairs:

e BEC limit: as for bosons, expt: Jin, Grimm, Ketterle,
Salomon

e a < 0 side: mapping to BEC side by change of a, expt:
Jin, Ketterle

e our proposal: direct interferometric measurement of gfalr



INTERFEROMETRIC DETECTION FOR BOSONS (1)




INTERFEROMETRIC DETECTION FOR BOSONS (2)

Operators number of atoms in each output channel:

Ky — al + ble—t® a =+ be'?
= V2 NG

Ny =1 [a’fa +bfh + (aTB et h.c.)}

Measure mean atom number difference between the two

channels: ) X o
(Ny — N_) = (aTb)e'® + c.c.

Y. Castin, J. Dalibard, PRA 55, 4330 (1997).



EXTENSION TO SPIN 1/2 FERMIONS

Now two spin components:

N+—N_—>N_T_—N1 and Ni_Ni

Nf_ _ N? = &Li)aew + h.c.
Coherence between pairs:

e no long distance first order coherence:
<&:r;i’a> — 0
e consider correlation function
C = (N} - Ny — ML)y~

C = |e*%(afalbiby) + (ablayby) + hoc.| (Np) !



MORE REALISTIC SET-UP (1)

Experimental procedure:
e prepare a trapped Fermi gas at thermal equilibrium
ot = (0: switch off trap and set a = 0

et = 07: Bragg extraction of two wavepackets
Akt ~ kp < k
e at overlap time: apply matter wave beam splitter

e measure atom numbers in each output channel and spin
component



MORE REALISTIC SET-UP (2)




THE MATTER WAVE BEAM SPLITTER
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RESULTS OF REALISTIC SET-UP
Correlation function:
C = (Ny)~! / dr / dr’ u(r)2|u(r’)?
x | (@l (rg + 1) (ra + 1) (rp + )P (v + 1))
+(@Ira + 1) + )P (ra + ) P1 (g + 1)) + huc]

where the Bragg extraction functions are u(r —r4 g).

In the BCS state for a large extraction region:

C =" cos20ul2. = in BCS limit
= COS u D 11 111
8v/2 g )7
1
C = ——cos2¢|ul?,, in BEC limit

V2



BEC: NO MATTER WAVE BEAM SPLITTER REQUIRED
0.D. (a.u.)
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T. Esslinger, 1. Bloch, T. Hansch, Jour. of Modern Optics
47, 2725 (2000)



ALTERNATIVE SET-UP

What was done for bosons:

e measure the mean density profile in the overlap region

Extension to paired fermions:

e opposite spin density-density correlation function:
92(r; s toy) = (P (v, to)B] (/s tov) P (v, tov )Py (r, tov))
e In BCS theory:
g2(r, s tov) = |u(r — rov)[*lu(r’ — rov)|?
X {pz + cos?[k(x + ' — 2zov)]|Ar — r)|2}
with anomalous average

A(u) = (¢ (rov)P1(tov + 1)) bes

— fringes on centroid position with wave vector 2k.



LIGHT SCATTERING OFF THE MATTER WAVE GRATING
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BALLISTIC EXPANSION

A very common experimental procedure:
e prepare trapped gas in steady state
e switch off trapping potential, let gas expand

¢ laser beam absorption imaging gives integrated density:
signal(z, y) /dz p(z,y, z;t)

e used as a ‘magnifying lens’: e.g. to reveal a vortex lattice
in a BEC (J. Dalibard)

e Truly a ‘magnifying lens’ if there is a scaling relation
1 [ T Y z

Po ’ ’ .
[La Aa(t)” ~ LA1() A2(t) As(t)

p(wa Y, z; t) —




BRIEF HISTORY OF SCALING SOLUTIONS

e For an ideal gas in a harmonic potential

e For the Boltzmann equation in a harmonic isotropic po-
tential: Boltzmann

e For the Gross-Pitaevskii equation in a harmonic trap:

—in Thomas-Fermi regime: . Shlyapnikov, E. Surkov,
Yu. Kagan (1996), R. Dum, Y. Castin (1996)

—in Thomas-Fermi regime for rotating traps: M. Ol-
shanii, P. Storey (2000), Y. Castin, S. Sinha (2001)

—in 2D in isotropic trap: . Shlyapnikov, E. Surkov,
Yu. Kagan (1996)

e For superfluid hydrodynamics in a harmonic trap with
equation of state pu o< p7: Stringari, Menotti (2002)



e for N-body Schrodinger equation of 1D gas of impene-
trable bosons in harmonic trap (formally equivalent to
an ideal Fermi gas):

e For N-body Schrodinger equation in 2D, isotropic har-
monic trap, 1/ r%z or §(r12) interaction potential:

¢ BUT required regularization of 0 breaks scaling invari-
ance: so Pitaevskii’s result
applies only to states with no particles at same point

zp(...,ﬁ:r—},...) =0 Vi#gy
like Laughlin state.



SCALING SOLUTION FOR THE 3D UNITARY QUANTUM GAS

The problem in an isotropic trap:

e Free Schrodinger equation over domain r;; 7 0:

N
1
thopp = Y | ———Ap + —mw?(t)r] | ¢
1 2m 2

e plus contact conditions:

Aﬁi'a _’9’6 s )
W7y = SO TR BID o)
i

e Initially, stationary state in static trap w = wg with en-
ergy L.



Ansatz: gauge plus scaling transform:

o—i0(t)
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e scaling preserves contact conditions

2.7

Yo(r1/A, ...

e gauge transform preserves contact conditions:
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e solves free Schrodinger equation if

2

X = “’— — W2 (H)A

o) = E/ h)\z(T)
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CONSEQUENCES OF SCALING SOLUTION

¢ Linear response: undamped mode of frequency 2wg

e Existence of lowering/raising operator:

s £ Y

L:I: — —
J
2 hwq =1

SR N AN Y

J

mwy N

- 2

N
j=1

L_|vg) vanishes or has eigenenergy E — 2hwy.

e Virial theorem, I'. Chevy:

E =2FEwam > 0

— spectrum semi-bounded, stability

NB. For isotropic trap hydrodynamic prediction gives same

scaling as exact solution.



CONCLUSION

e Long range order in a spin 1/2 Fermi gas
— Quantum Monte Carlo results in 1D
e Interferometric detection of the long range order

—set up 1: with a matter wave beam splitter

—set up 2: without a matter wave beam splitter
e The unitary quantum gas

—an exact time dependent solution



