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Introduction

e T heoretical treatment of Bragg spectroscopy of an accelerating
solitary-wave

e Description in translating frame where the condensate is
stationary

e Simplified accurate calculations of spectra from two-state
momentum-space model

e lllustrate methods using condensate micromotion in a time-
averaged orbiting potential (TOP) trap

— Features of Bragg spectrum experimentally accessible [1]

Two-state Model Bragg spectra in a TOP trap

e Work in momentum space of translating frame Bragg pulse

e Partition momentum space into equally sized bins [4]
e Optical potential in circularly translating frame is

n=-1 n n=0 = n=+1

1
V(X t) = §U0 cos(qX + qyt cos 2t — wt),

Solitary-wave solutions

e Particular solutions to the Gross-Pitaevskii equation

z’%w(r, t) = (—V2 +V(r)+ G(r,t) + C|(r, t)|2) p(r, )

— V(r) confines the condensate
— G(r, t) generates solitary-wave motion

—( = 47rhaN/mwxa;8 accounts for inter-atomic collisions

e Condensate evolves without changing shape [2, 3]

b (r, 1) = E(r — B(t))eHLHS (e

—pE(r) = (V2 +V(r) + ClE(r)) £(r)
—S(r,t)=dr- T 1 [rQ(t) — (dd—@ﬂ dt
e Centre of mass motion 1(t) governed by
107K (1)
2 Ot
—F(r,t)=V(r)+ G(r,t) — V(r — (1))

e Solitary-wave solutions only exist for particular potentials,
e.g., for V(r) = %(:EZ + y? + A?2%) we require

G(r,t) =g1(t) - r + g2(D).

= —VF(r,t)

e Examples of solitary-wave motion

—dipole oscillations in a harmonic trap
— micromotion in a TOP trap

— motion due to experimental noise in the trap position

Translating frame

e Transform to frame where solitary-wave is at rest
e Co-ordinates defined by [3]
R=r—r(t)and P=p — %dr(t)

e Applicable to arbitrary centre of mass motion

e Wave function in translating frame obeys
0
iU (R) = (VR + VR) + CT(R.0)]) 0T (R0

e No explicit time dependence appears

Bragg Spectra

e Bragg pulse causes coupling via two-photon processes
— @ —
q=k; —ko
W= W] — w9
e Optical potential
Vopt(r,t) = %UO cos(q - r — wt)

e In translating frame
1
Vat(R, £) = SUocos(q - R+q - 1(t) — wt)

e Measure the population P, {(w) scattered by momentum q as
a function of w

Theoretical Treatment

e Need for approximate method

— Calculating Bragg spectra directly from the Gross-Pitaevskii
equation is computationally intensive

— Seek a physical interpretation

Basis of approximate treatment

e Neglect interactions (C' = 0)
e Assume the confining potential is turned off (V (r) = 0)
e Bragg pulse applied along the x axis (q - R = ¢X)

e System reduces to one dimension with wave function 1 ' (X, t)

: opt
'\ A a frequency modulated potential [1, 5]
T T e Well known expansion
e Infinite set of equations which couple momentum wave Vot (X 8) = %Uo{Jo(vq) cos(qX — wt)
functions of consecutive bins < ™
— — 1) a4 cos | qX —wt — (2l 4+ 1) — —
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e Assume only bins n = 0 and n = +1 are populated [4] e Resonance frequencies separated by )
D () (wien &Y (dEY)
ot \ ¢11(k,1) D wy(k, t) + Alr, t) (%) Bragg spectra
2 dz(?)
A(k,t) =26+ ¢  —w+g 7 e Two-state model in good agreement with full calculations
(C =0)

Validity regime

e Independent resonance approach only accurate when t = n1q

e Resonant coupling only between bins n =0 and n = +1 Uy = 45, ¢ = 29 Up=45,9=29
. ) i ro = 1241, €2 = 153, t = 8T T0:878,Q:76,t:3§TQ
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— Neglect higher order coupling: t < ==~
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Full numerical simulation C' = 0 (-), two-state model (- -), and independent

resonance approach (--).

Independent Resonance Approach Collisional Effects

e Calculate spectra using full Gross-Pitaevskii equation

e Use Fourier methods to write the optical potential as
| e T hree primary effects
G

Vopt(X, 1) = 5 Z ¢ cos(gX — (w4 wp)t + €)
[

— Narrower spectral features

— Increased peak scattering

e In translating frame multiple resonances possible — Resonances shifted up in frequency by ~ 4/7 [4]

e Treat each term independently if resonances are well separated e Well described in one dimension

Uy = 45, ¢ = 29

e Relative phase can cause consecutive terms to act

independently, t ro = 1241, Q = 153, t = 81,
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e \Very simple numerically
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Full numerical simulations with C' = 0 (=), in 1D with C' = 85,
p=10.08 (- -), and in 2D with C' = 600, pu = 9.85 (-*)

Example: TOP Trap

Conclusion

Solitary-wave solutions

e Simple description of Bragg spectroscopy of a condensate

e The TOP trap potential can be well approximated by [3, 5] celerating as a solitary-wave
ac j itary-wav

Vrop(r,t) = Vi(r) + ro(cos ¢, sin O, 0) - v e Developed theoretical models in translating frame

—1rg = 'circle of death’ e Methods illustrated using condensate solitary-wave behaviour

ina TOP trap

e Excellent agreement between simple theoretical model and
calculations of the full Gross Pitaevskii equation

— () = bias field rotation frequency

e Eigenstates of the TOP trap do not exist in the lab frame

e In circularly translating frame eigenstates of the TOP trap exist
and are solitary-wave solutions in the lab frame with
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e Eigenstates retain their orientation with respect to the lab frame
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e TOP trap has eigenstates in the frame rotating with the bias
field

e Gross-Pitaevskii equation in the rotating frame

0 .
= (1, 8) = =V + Viop(r') — QL)) + C/(x', )7 ) /('

e TOP trap eigenstates calculated using the rotating frame are
restricted [3], must also satisfy

L,(r)é(r) = L£(r)




