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Introduction

• Theoretical treatment of Bragg spectroscopy of an accelerating
solitary-wave

•Description in translating frame where the condensate is
stationary

• Simplified accurate calculations of spectra from two-state
momentum-space model

• Illustrate methods using condensate micromotion in a time-
averaged orbiting potential (TOP) trap

– Features of Bragg spectrum experimentally accessible [1]

Solitary-wave solutions

• Particular solutions to the Gross-Pitaevskii equation

i
∂

∂t
ψ(r, t) =

(

−∇2 + V (r) +G(r, t) + C|ψ(r, t)|2
)

ψ(r, t)

– V (r) confines the condensate

–G(r, t) generates solitary-wave motion

–C = 4πh̄aN/mωxx
3
0 accounts for inter-atomic collisions

• Condensate evolves without changing shape [2, 3]

ψSW(r, t) = ξ(r − r̄(t))e−iµt+iS(r,t)

– µξ(r) =
(

−∇2 + V (r) + C|ξ(r)|2
)

ξ(r)

– S(r, t) = 1
2r ·

dr̄(t)
dt + 1

4

∫

[

r̄2(t) −
(

dr̄(t)
dt

)2
]

dt

• Centre of mass motion r̄(t) governed by

1

2

∂2r̄(t)

∂t2
= −∇F (r, t)

– F (r, t) = V (r) +G(r, t) − V (r − r̄(t))

• Solitary-wave solutions only exist for particular potentials,

e.g., for V (r) = 1
4(x

2 + y2 + λ2z2) we require

G(r, t) = g1(t) · r + g2(t).

• Examples of solitary-wave motion

– dipole oscillations in a harmonic trap

– micromotion in a TOP trap

– motion due to experimental noise in the trap position

Translating frame

• Transform to frame where solitary-wave is at rest

• Co-ordinates defined by [3]

R = r − r̄(t) and P = p − 1
2
dr̄(t)
dt

• Applicable to arbitrary centre of mass motion

•Wave function in translating frame obeys

i
∂

∂t
ψT(R, t) =

(

−∇2
R + V (R) + C|ψT(R, t)|2

)

ψT(R, t)

• No explicit time dependence appears

Bragg Spectra

• Bragg pulse causes coupling via two-photon processes
ω2ω1

2k
1k

q = k1 − k2
ω = ω1 − ω2

•Optical potential

Vopt(r, t) = 1
2U0 cos(q · r − ωt)

• In translating frame

V t
opt(R, t) =

1

2
U0 cos(q · R + q · r̄(t) − ωt)

•Measure the population P+1(ω) scattered by momentum q as
a function of ω

Theoretical Treatment

• Need for approximate method

– Calculating Bragg spectra directly from the Gross-Pitaevskii
equation is computationally intensive

– Seek a physical interpretation

Basis of approximate treatment

• Neglect interactions (C = 0)

• Assume the confining potential is turned off (V (r) = 0)

• Bragg pulse applied along the x axis (q · R = qX)

• System reduces to one dimension with wave function ψT(X, t)

Two-state Model

•Work in momentum space of translating frame

• Partition momentum space into equally sized bins [4]

0 q−q

κ κ κ

K

n=0 n=+1n=−1

• Infinite set of equations which couple momentum wave
functions of consecutive bins

∂

∂t
φT
n(κ, t) = ωn(κ, t)φ

T
n(κ, t)+

1

4
U0

[

φT
n−1(κ, t) + φT

n+1(κ, t)
]

ωn(κ, t) = (κ + nq)2 − nω + nq
dx̄(t)

dt
• Assume only bins n = 0 and n = +1 are populated [4]

i
∂

∂t

(

φT
0 (κ, t)

φT
+1(κ, t)

)

=

(

ω0(κ, t)
U0

4
U0

4
ω0(κ, t) + ∆(κ, t)

) (

φT
0 (κ, t)

φT
+1(κ, t)

)

∆(κ, t) = 2κq + q2 − ω + q
dx̄(t)

dt

Validity regime

• Resonant coupling only between bins n = 0 and n = +1

– Neglect other coupling between consecutive bins:
U0 < 2q(q − σ − δp)

∗ σ = 1/e condensate momentum width

∗ 2δp =
dx̄(t)
dt

∣

∣

∣

max
−

dx̄(t)
dt

∣

∣

∣

min

– Neglect higher order coupling: t� 8πq2

U 2
0

Independent Resonance Approach

• Use Fourier methods to write the optical potential as

V t
opt(X, t) =

1

2

∑

l

cl cos(qX − (ω + ωl)t + εl)

• In translating frame multiple resonances possible

• Treat each term independently if resonances are well separated

• Relative phase can cause consecutive terms to act
independently,
e.g., in the limit clt4 � 1,

cos

[

1

2
(ωl+1 − ωl)t− (εl+1 − εl)

]

= 0

• Very simple numerically

Example: TOP Trap

Solitary-wave solutions

• The TOP trap potential can be well approximated by [3, 5]

VTOP(r, t) = VH(r) + r0(cos Ωt, sin Ωt, 0) · r

– r0 = ‘circle of death’

– Ω = bias field rotation frequency

• Eigenstates of the TOP trap do not exist in the lab frame

• In circularly translating frame eigenstates of the TOP trap exist
and are solitary-wave solutions in the lab frame with

r̄(t) = γt(cos Ωt, sin Ωt, 0)

γt =
2r0

Ω2 − 1

Y

X

Ωt

x

y

γ

• Eigenstates retain their orientation with respect to the lab frame

NOT the rotating frame

• TOP trap has eigenstates in the frame rotating with the bias
field

• Gross-Pitaevskii equation in the rotating frame

i
∂

∂t
ψ′(r′, t) =

(

−∇2
r′ + V ′

TOP(r′) − ΩL̂z(r
′) + C|ψ′(r′, t)|2

)

ψ′(r′, t)

• TOP trap eigenstates calculated using the rotating frame are
restricted [3], must also satisfy

L̂z(r)ξ(r) = lzξ(r)

Bragg spectra in a TOP trap

Bragg pulse

•Optical potential in circularly translating frame is

V t
opt(X, t) =

1

2
U0 cos(qX + qγt cos Ωt− ωt),

a frequency modulated potential [1, 5]

•Well known expansion

V t
opt(X, t) =

1

2
U0 {J0(γq) cos(qX − ωt)

−

∞
∑

l=0

(−1)lJ2l+1(γq)
[

cos
(

qX − ωt− (2l + 1)Ωt−
π

2

)

+ cos
(

qX − ωt + (2l + 1)Ωt−
π

2

)]

+

∞
∑

l=1

(−1)lJ2l(γq) [cos(qX − ωt− 2lΩt) + cos(qX − ωt + 2lΩt)]

}

• Resonance frequencies separated by Ω

Bragg spectra

• Two-state model in good agreement with full calculations
(C = 0)

• Independent resonance approach only accurate when t = nTΩ

U0 = 45, q = 29
r0 = 1241, Ω = 153, t = 8TΩ
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U0 = 45, q = 29
r0 = 878, Ω = 76, t = 31
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Full numerical simulation C = 0 (–), two-state model (- -), and independent

resonance approach (-·).

Collisional Effects

• Calculate spectra using full Gross-Pitaevskii equation

• Three primary effects

– Narrower spectral features

– Increased peak scattering

– Resonances shifted up in frequency by ≈ 4µ/7 [4]

•Well described in one dimension

U0 = 45, q = 29

r0 = 1241, Ω = 153, t = 8TΩ
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Full numerical simulations with C = 0 (–), in 1D with C = 85,

µ = 10.08 (- -), and in 2D with C = 600, µ = 9.85 (-·)

Conclusion

• Simple description of Bragg spectroscopy of a condensate
accelerating as a solitary-wave

•Developed theoretical models in translating frame

•Methods illustrated using condensate solitary-wave behaviour
in a TOP trap

• Excellent agreement between simple theoretical model and
calculations of the full Gross Pitaevskii equation
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