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Overview

# Lieb-Liniger and Tonks-Girardeau gas and the

Landau criterion of superfluidity

# A pseudopotential Hamiltonian
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~ermionization of 1D Bosons — Bosonization of
~ermions

Hartree-Fock theory

Dynamic Structure factor in RPA
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Tonks-gas — Experiments
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1D Bose Gas — Lieb-Liniger model
2 2
H=> [;Ln -+ Vext(ﬂ%')] + %c > 6(my — x4)
i i<j
# 1D Bosons with repulsive § interactions

# Ground- and excited-state wavefunctions of
homogeneous system (V_,=0) are exactly known

from Bethe ansatz [Lieb, Liniger 1963]
# Interaction parameter
# Quasicondensate,

# For , problem is mapped exactly to
(Tonks-Girardeau gas) [Girardeau 1960]
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Excitation spectrum for the Lieb-Liniger model
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momentum qn/k. umklapp excitation momentum gnr/k.

Ke=myp;  ep=h? k2/(2m)
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Elementary excitations —
Landau superfluidity?
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Bose gas — Bogoliubov dispersion
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Free Fermi gas — Lieb Liniger

; Landau criterion:
i Are elementary excitations from
it roughness of the wall
ol energetically favourable?
) SemI——EEDY umklapp excitation
0 1 N2 3 "o, _
a/pr e Mpipks
v. =07 .
¢ DSF of the 1D Bose gas °



Bose-Fermi mapping

“In 1D, there is no distinction between Bosons and Fermions'

\

Strong repulsive interactions for bosons have the same effect
as the Pauli exlusion principle for fermions.

Bosons with

interactions map to spinless

fermions with
range interactions

Fermions

Bosons

but finite

short-

X X
Cheon and Shigehara PRL 1999
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Pseudopotential in the Fermionic picture

Pseudopotential generates energy levels to first order in 1/y

2h2
V(z1,22) = _R(S (r1 —x2) [D.Sen 1999]

generalization for arbitrary y:
4%25 1+ 2o — a5 —
mc

V(x1, w0, 15, 27) = — ) §' (21 —x2)8 (2 —25)

compare with
Granger and Blume [2004]
and Girardeau and Olshanii [2004]
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Hartree-Fock with pseudopotential

Hartree-Fock operator becomes local!

~ 2 H2 22 a 452 o 2h2
T = 2+Vext(y)‘|'7,0(y) P(y)% — (y)
2m8 oy mec

Momentum and kinetic energy densities appear:
Ply) = —i anw*}(y)wj(y)

M(y) = Z”J[ W) () + 20" (1) (1)

For V_.(y)=0, th]e quasiparticle energy dispersion

o TLQQQ B 275“27T2n3
¢ 2m* mec 3

m
1 —4~—1
The Hartree-Fock ground state energy is correct up to first order in y
Brand and Cherny [cond-mat/0410311]

with renormalized mass m™ =
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Elementary excitations: Random-
Phase approximation (RPA)

# RPA is the linearized time-dependent Hartree-Fock
method:
calculate linear response of density

_ op(q,w)
Khgew) = 6 Vext (g, w)
# can be applied for homogeneous (analytical) and
inhomogeneous (numerical) problems

# Dynamic structure factor (DSF) contains information
about excitation probabilities

S(q,w) =Y [(0|pg|n)[*6 (Fuw — En, + Ep)

_ ~Imx(g, —w — €) (w > 0)

7
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The Polarizability of the Tonk's gas

2 2

(0) Nm* w< —w=(q)

X (Q7w) — In :
1 Dh2qkE w2| (q) — w?

Nwm* [ 1, w_ <ztw <wy,
<
QTLQQI{?F

XgO) (Q7 w) —

0, else,

\

The DSF of the Tonk's gas

S(q.w) Nm* 1, w- <w<wg,
Dw —
K Dh2qke | 0, else,
h|2kpq £ g2
wt(q) = 2kpa £ 77, kp =mnip

*
2m ks
[ ]
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Dynamic Structure Factor for the

Tonk's gas
(q /k:)S(q,0) & Energy dependence at q,=1.9
energy”’ | | | R ' S(q,0) &,
ho/er 4 0.5 -
3 e
2 .l
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Dynamic Structure Factor in RPA

X9 (q,w + ie)
(1 —4y1[B — Dx(O)(q,w + ic)]

x(q,w +ie) =

—xgo)(q, w)B

S(q,w) =
q (1 _47_1)[<B _ ngo))z N <DX50))2]

+6[w — wo(q)]A(q)

B=1-4(3vy-16)/(y—4)°

N (y—4)2 v g 2(y — 4)2

H_%F v )aP2y-9 2 [ﬁ(w—|—z's)kpr 3y — 16
k|2: 27y ¥
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Dynamic Structure Factor in RPA

Energy dependence at gq=const, y=13

S(0.4kp,w)Er S(2kp,W)ER
|5t
3t 8 function contribution 0.4
. 5}
ol .2}
¥l nt—~
é f’/ DSF to first order in y!
-S| 2|
0. 0
hw
€r
*Significant is predicted to
occur at y> 1 where RPA should be applicable
-Peak of DSF near for small momenta
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Dynamic Structure Facto

momentum g/k:

DSF of the 1D Bose gas
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Dynamic Structure Factor in RPA
v=13

S(g,w)hge; /N

g =const, v — 4o
A(q) ~ 2N~y exp(—yq/kF)
jwo — w4| o< exp(—vq/kr)

v=const, ¢qg— 4
A(q) ~ N

Tl2q2

2m

Red dots - the 8-branch o, hwo(q) =~
what is physical meaning?
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First-order expansion of DSF

S(q) =" [O+°O dw S(g,w)/N

g@) =1+n 1 [ SX[5() — 1]e

2k
ol
flg,w) = |(w® — w2)/(w — w?)]

g(x =0) = O(y %)

k 1
erpS(q,w) = 4—Z—I- +Zln flg,w) +0(H2)

> k2
()=m2quiq‘- kp=mnip; €Fp=4q=
w4 D * ' 2m
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Bragg scattering

(@)o2 {6} IRt

. ‘e

The dynamic structure = !
factor could be 0.8 '

0:2 0 02 04 02 0 0.2
z (mm) z (mm)

measured by Bragg

spectroscopy. Similar
p py FIG. 2. Absorption TOF images of excited Bose-Einstein

experlments on 3D condensates. (a) Absorption image for kK = 2.63, with the large
cloud at the origin corresponding to the unperturbed BEC. A
BECS have been done' clear halo of scattered atoms is visible between the BEC and the

cloud of unscattered outcoupled excitations. (b) Absorption
image for kK = 1.06. For this value of k the distinction between
scattered and unscattered excitations is not clear, since both
types of excitations occupy the same region in space.

From Katz et al. 89 220401 (2002)
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Summary

# RPA scheme has been applied to the pseudopotential,
obtained expressions are

# Prediction of ] can
be tested by experiment

# The response function and DSF in RPA provide

from exact
solutions
# Landau by suppression of
umklapp excitations
# Extensions to and

systems are obvious
Brand and Cherny [cond-mat/0410;’>_11]
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