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Overview

Lieb-Liniger and Tonks-Girardeau gas and the 
Landau criterion of superfluidity
A pseudopotential Hamiltonian 
Fermionization of 1D Bosons – Bosonization of 
Fermions
Hartree-Fock theory
Dynamic Structure factor in RPA
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Tonks-gas – Experiments

MPQ Garching

other experiments:

T. Esslinger (Zürich)

W. Phillips (NIST)

D. Weiss (PSU), ¼5.5

up to eff¼ 200
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1D Bose Gas – Lieb-Liniger model

1D Bosons with repulsive  interactions
Ground- and excited-state wavefunctions of 
homogeneous system (Vext=0) are exactly known 
from Bethe ansatz [Lieb, Liniger 1963]
Interaction parameter  = c/n1D

Quasicondensate, GP+Bogoliubov for ¿ 1

For !1, problem is mapped exactly to free Fermi 
gas (Tonks-Girardeau gas) [Girardeau 1960]
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Excitation spectrum for the Lieb-Liniger model
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He II

Elementary excitations –
 Landau superfluidity?

 = pvc

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10
Bose gas – Bogoliubov dispersion



p

 = pvc

Free Fermi gas – Lieb Liniger

I

II

vc = 0 ?

Landau criterion: 

Are elementary excitations from 
roughness of the wall 
energetically favourable?

umklapp excitation
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Bose-Fermi mapping

Fermions Bosons

Cheon and Shigehara PRL 1999

Strong repulsive interactions for bosons have the same effect 
as the Pauli exlusion principle for fermions.

Bosons with strong but finite 
interactions map to spinless 
fermions with weak short-
range interactions

“In 1D, there is no distinction between Bosons and Fermions“
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Pseudopotential in the Fermionic picture

Pseudopotential generates energy levels to first order in 1/

compare with 
Granger and Blume [2004]

and Girardeau and Olshanii [2004]

[ D. Sen 1999]

generalization for arbitrary 
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Hartree-Fock with pseudopotential
 Hartree-Fock operator becomes local!

Momentum and kinetic energy densities appear:

The Hartree-Fock ground state energy is correct up to first order in -1

For Vext(y)=0, the quasiparticle energy dispersion

with renormalized mass

Brand and Cherny [cond-mat/0410311]
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Elementary excitations: Random-
Phase approximation (RPA)

RPA is the linearized time-dependent Hartree-Fock 
method: 
calculate linear response of density

can be applied for homogeneous (analytical) and 
inhomogeneous (numerical) problems 
Dynamic structure factor (DSF) contains information 
about excitation probabilities
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The Polarizability of the Tonk‘s gas

The DSF of the Tonk‘s gas
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Dynamic Structure Factor for the 
Tonk‘s gas

Energy dependence at q0=1.9

S(q0,) F

~F

energy 
~F

momentum q/kF

(q /kF)S(q,) F
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Dynamic Structure Factor in RPA
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Dynamic Structure Factor in RPA
Energy dependence at q=const, =13

=1

•Significant suppression of umklapp excitation is predicted to 
occur at À 1 where RPA should be applicable 

 function contribution

•Peak of DSF near - branch for small momenta

DSF to first order in -1
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Dynamic Structure Factor in RPA

(q /kF)S(q,) F

momentum q/kF

 =13

Energy /F
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Dynamic Structure Factor in RPA
 =13

Red dots - the branch 0 

what is physical meaning?

-

+
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First-order expansion of DSF
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Bragg scattering

From Katz et al. 89 220401 (2002)

The dynamic structure 
factor could be 
measured by Bragg 
spectroscopy. Similar 
experiments on 3D 
BECs have been done.
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RPA scheme has been applied to the pseudopotential, 
obtained expressions are valid at least up to first order 
in 1/
Prediction of enhancement of + and - branches can 
be tested by experiment 
The response function and DSF in RPA provide 
information not previously accessible from exact 
solutions
Landau superfluidity emerges by suppression of 
umklapp excitations
Extensions to finite temperature and inhomogeneous 
systems are obvious

Summary

Brand and Cherny [cond-mat/0410311]


