MPIPKS Dresden Mesoscopic Phenomena 2004

Local blockade of Rydberg excitation in an ultracold gas

by Robin Côté

University of Connecticut

Co-PI's Phillip Gould Edward Eyler

Monday, October 11 2004

- Rydberg atoms, phase gate, excitation blockade
- Our findings (theory/experiment)
- Next steps/Conclusions
 - Go Huskies !!!

Motivations/Introduction

- Quantum information
 - Strong interactions between components (qubits)
 - ←To entangle states and process information before decoherence sets in
 - Weak coupling to environment
 - ←To minimize decoherence
- Why ultracold Rydberg atoms ?
 - Strong interactions when 2 atoms are excited to Rydberg states
 - Extremely weak interactions between ground state atoms
 - Hyperfine ground states of alkali atoms ideal for qubits
 - Quantum gates could be realized on short timescale
 - Conditional excitation (blockade) predicted
 - Controllable interactions
 - ←Ensemble of atoms behave as a single atom

What is a Rydberg?

- Here are 3 types of Rydberg ! (Careful with the web!)
- A 1st type
 - P. A. (Per Axel) Rydberg (1860-1931), the first curator of The New York Botanical Garden Herbarium
- A 2nd type
 - Viktor Rydberg (1828-1895). One of the great swedish romanticists. He wrote many poems.
- The "real" one !

– Johannes Robert Rydberg (1854-1919): swedish physicist.

Rydberg Atoms

- Alkali atoms are good candidates to encode qubits:
 - Measurement high quantum efficiency: e.g., cycling transition.
 - Easy cooling and trapping
 - Low decoherence times.
- Rydberg atoms resemble hydrogen atom:
 - Radius and dipole moment scale as n^2
 - Energy $\propto 1/(n-\delta_{n,l})^2$, quantum defect $\delta_{n,l}$
- Long lifetimes $\propto n^3$. 50p, $\tau=238 \ \mu s \ (\tau=.02 \ \mu s \ for \ 5p)$
- Large polarizability $\propto n^7$: Stark mixing other I by electric fields F

$$|\widetilde{49}p\rangle = \alpha |49p\rangle + \beta |49s\rangle + \dots \text{ with } \beta = 0.11 \text{ } F \implies \widetilde{\mu}_{pp} = 2\alpha \beta \mu_{sp}$$

Phase Gates

- Truth table: $|m\rangle \otimes |n\rangle \Rightarrow e^{imn\phi} |m\rangle \otimes |n\rangle$
- Logical states: |0> or |1>
 alkali atoms: 2 hyperfine states
- "Simple" phase control gate
 - use atoms in an optical lattice
 - state preparation (single-qubit gates):
 - optical pumping + Raman pulses

$$| \mathbf{A} \rangle = \frac{1}{\sqrt{2}} \left\{ | \mathbf{0} \rangle + | \mathbf{1} \rangle \right\}$$
$$| \mathbf{B} \rangle = \frac{1}{\sqrt{2}} \left\{ | \mathbf{0} \rangle + | \mathbf{1} \rangle \right\}$$

- Two-qubit state
 - $| \mathbf{Q} \rangle \neq | \mathbf{A} \rangle \otimes | \mathbf{B} \rangle$ $| \mathbf{Q} \rangle = | \mathbf{00} \rangle + | \mathbf{01} \rangle + | \mathbf{10} \rangle | \mathbf{11} \rangle$

 $\phi(t) = 2\pi\mu_A\mu_B t/h R^3$

 $\phi = \pi$ for $\tau = 5.3 \mu sec$ (n=50, R=25 μm , $\Phi = 3$ V/cm)

Resonant Dipole-Dipole

• Tune to exact resonance with *F*

$$\begin{aligned} |\pm\rangle &= \frac{1}{\sqrt{2}} \left(|pp\rangle \pm \frac{1}{\sqrt{2}} (|ss'\rangle + |s's\rangle) \right) \\ 2\Delta &\sim \frac{\mu_{ps'}\mu_{ps}}{r^3} \end{aligned}$$

 $\begin{vmatrix} 00 \rangle \rightarrow & | 00 \rangle & | 01 \rangle \rightarrow - & | 01 \rangle \\ | 10 \rangle \rightarrow - & | 10 \rangle & | 11 \rangle \rightarrow - & | 11 \rangle \\ \end{vmatrix}$

• Gate Fidelity not sensible to atomic separation as long as: $\gamma_L \ll \Delta$ and $\Omega \ll \Delta$.

D. Jaksch, J. I. Cirac, P. Zoller, S.L. Rolston, R. Côté, and M.D. Lukin, PRL 85, 2208 (2000).

Rydberg-Rydberg interactions

Combination of coefficients can lead to long-range wells

 -"stable" if electron wavefunctions do not overlap (non-shaded region)
 -very extended molecules (few µm or more) : macrodimers

C. Boisseau, I. Simbotin, & R. Côté, PRL 88, 133004 (2002)

Spectral evidence

• As Rydberg density increases (with *I*), effect of C's becomes

See also recent work by M. Weidemüller's group (arXiv:physics/0404075).

Molecular resonance

• At large Rydberg densities \Rightarrow additional spectral features

S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Côté, E.E. Eyler, and P.L. Gould, PRL **91**, 183002 (2003).

van der Waals Blockade

- van der Waals $\propto n^{11}$
 - interactions shift the two-photon resonance
- Low *n* or densities
 - Weak interactions
 between Rydberg atoms
 - 2-photon resonance is shifted at "small" *R*
 - below R_D , excitation of 2 Rydberg atoms (or more) is prohibited
 - Isolated atom behavior

Separation R

- large *n* or densities
 - strong molecular interactions
 - resonance shifted at large R
 - Blockaded behavior

A sketch

Blockade

- Ensemble of atoms
 - few μm in size
 - 10-100 atoms

- Collective states
 |g >: All atoms in ground state.
 |qⁿ>: Collective state of n-atoms in q.
 |r¹>: Only one excitation allowed in r.
- Prepare initial state
 - $|g\rangle \xrightarrow{\Omega\sqrt{N}} |r^{1}\rangle \xrightarrow{\Omega_{q}} |q^{1}\rangle$
 - Based on conditional excitation
 - Ensemble behaves as a "superatom"

M.D. Lukin, M. Fleischhauer, R. Côté, L.M. Duan, D. Jaksch, J.I. Cirac, and P. Zoller, PRL **87**, 037901 (2001)

About a larger sample ?

- low *n* or densities
 - isolated atom
 behavior

- large *n* or densities
 - locally blockaded domains

Experimental Scheme

- Direct one-photon excitation with 10 nsec transform-limited laser pulse.
- Detection via trap fluorescence dip or delayed pulsed field ionization.

- Suppression
 - stronger as *n* grows
- Large intensities
 - Ionization ?

40*p*-70*p* Comparison

- At lower I (no ionization), using scaled irradiance (n^{-3})
- 40*p* linear signal: individual atoms
- 70*p* rapid saturation:
 excitation blockade
 (domain formation)
- shape depends on laser intensity profile

Scaled Irradiance (MW/cm²) X (40p*/np*)³

New measurements

Solid line for *n*=30:

See D. Tong et al., PRL 93, 063001 (2004).

The model

• Bloch-like equations for a single atom with level shifted by interactions d = 0

$$i\frac{d}{dt}c_{g} = \frac{\Omega}{2}c_{e}$$
$$i\frac{d}{dt}c_{e} = \varepsilon c_{e} + \frac{\Omega}{2}c_{g}$$

- Mean-field model
 - Initially, no excited atoms
 - Select a sphere of radius R_d in the sample
 - It contains one Rydberg atom (by definition)

$$\rho_e(t)V_d(t) = 1$$

$$\rho \int_{V_d} d^3 r \left| c_e(\vec{r}, t) \right|^2 = 1$$

The level shift

$$\varepsilon_{i} = \sum_{k \neq i} \left\langle p_{i} p_{k} | \hat{V} | p_{i} p_{k} \right\rangle = \sum_{k \neq i} \sum_{\lambda} \left\langle p_{i} p_{k} | \hat{V} | \lambda \right\rangle \left\langle \lambda | p_{i} p_{k} \right\rangle$$
$$\varepsilon_{i} = \sum_{k \neq i} \sum_{\lambda} \frac{C_{6}^{(\lambda)}}{\left| \vec{r}_{i} - \vec{r}_{k} \right|^{6}} \left| \left\langle p_{i} p_{k} | \lambda \right\rangle \right|^{2} \qquad \text{One pair of } \lambda \text{ dominates}$$
(with same C_{6})

- Mean-field
 - Replace sum by integral
 - $-\rho_e$ constant (same as in V_d)
 - One pair of λ dominates (with same C_6)

$$\begin{array}{c}
\rho_e \\
V'=V-V_d
\end{array}$$

$$\varepsilon(\vec{r},t) = \rho_e(t) \int_{V'} d^3 r' \frac{-C_6}{\left|\vec{r} - \vec{r}'\right|^6} \sum_{\lambda=1}^2 \left| \left\langle p_i p_k \right| \lambda \right\rangle \right|^2$$

Mean-field model

• With
$$\mathbf{r} = \mathbf{y} R_d$$
 and $\rho_e V_d = 1$,
 $\varepsilon(\vec{y}, t) = -g(\vec{y}) \frac{\tilde{C}_6}{R_d^6}$

with effective C_6 (averaging over angles)

- If Rydberg not in center of V_d
 - $-\epsilon$ smallest in the center (y=0)
 - \Rightarrow easier to excite
 - ε grows at the periphery (y=1) ⇒ harder to excite
- But $R_d^{-3} = \rho \int_{|\vec{y}| \le 1} d^3 y \left| c_e(\vec{y}, t) \right|^2$

Non-linear Bloch-like Eqs.

• Including the laser chirp $i\frac{d}{dt}c_g = \frac{\Omega}{2}e^{i\beta t^2}c_e$,

 $i\frac{d}{dt}c_e = -\rho^2 \tilde{C}_6 g \left| \int_{|\mathbf{y}| \le 1} d^3 \mathbf{y} |c_e|^2 \right|^2 c_e + \frac{\Omega}{2} e^{-i\beta t^2} c_g$ Time evolution $\rho_e \qquad \rho_e \qquad \rho_$

- Parameter α : $\rho_{\alpha} \tilde{C}_{6,\alpha}^{1/2} = \alpha \rho \tilde{C}_{6}^{1/2}$
- Need averaging over density and intensity profiles in MOT $N_e = \int_{MOT} d^3r \,\rho_e(\rho(\vec{r}), \Omega(\vec{r}))$

Time evolution and chirp

time (units of τ)

Density dependence for n=80

• Using MOT repump timing to vary density

Next steps ...

- Better calibration and modeling of experiment
 - single-atom saturation curve
 - domain size and formation
 - Scaling with *n*
- Smaller samples
 - phase gate
- Optical lattice

– using the "van der Waals" blockade

 $|1\rangle$

UV

 $|0\rangle$

People

• People involved

students

J. Stanojevic D. Tong S. Krishnan A.S. Estrin **postdocs** J. Calsamiglia C. Boisseau S.M. Farooqi Y.P. Zhang J.R. Ensher

PI's

R. Côté E.E. Eyler P.L. Gould

and co-workers ...

