Dresden, 12.10. 2004

BEC of ⁶Li₂ molecules: Exploring the BEC-BCS crossover

Johannes Hecker Denschlag

Institut für Experimentalphysik Universität Innsbruck

The lithium team

Selim Jochim Markus Bartenstein Alexander Altmeyer Stefan Riedl Reece Geursen Cheng Chin Johannes Hecker Denschlag Rudi Grimm

fermion + fermion = boson

BEC – BCS crossover

molecules strong coupling Crossover Cooper pairs weak coupling

high T_C superconductivity, neutron stars, ³He superfluidity, nuclear physics

⁶Li in Innsbruck

Bose-Einstein Condensation of ⁶Li₂

- production of molecules
- cooling to condensation

Exploring the BEC-BCS cross-over (varying particle interaction)

- studied cloud size
- excitation of collective oscillations
- pairing gap --- pairing of fermions

Location of the Feshbach resonance

rf spectroscopy

Two Component Ultracold Li Atoms

• 50% - 50% mixture of ⁶Li atoms in the lowest two ground states

Special features: •Stable against two-body decay

B

field

Feshbach resonance ⇒
tunable interaction

10 billion times weaker than normal molecules

molecule formation

B = 690 G:

mol. bind. energy $E_{\rm b} = k_{\rm B} \cdot 18 \mu {\rm K} >> {\rm therm. energy } k_{\rm B} T = k_{\rm B} \cdot 2.5 \mu {\rm K}$

molecular BEC gallery

JILA, Jin et al.

MIT, Ketterle et al.

ENS Paris, Salomon et al.

Rice Univ., Hulet et al. ⁶Li₂

- Production of molecules

Exploring the BEC-BCS cross-over (varying particle interaction)

- studied cloud size
- excitation of collective oscillations
- pairing gap --- pairing of fermions

Location of the Feshbach resonance

rf spectroscopy

collective modes

S. Stringari, Europhys. Lett. 65, 749 (2004): interesting behavior of collective oscillation modes in the crossover !!!

> our cigar-shaped trap $v_r = 755(10) \text{ Hz}, v_z \approx 22 \text{ Hz}$

axial

Theory: Stringari `97-`03, Vichi `01, Baranov `01, Heiselberg `04

radio-frequency spectroscopy

meas. of mol. bind. energy in ⁴⁰K Regal *et al.*, Nature **424**, 47 (2003) rf spectroscopy of ⁶Li: Gupta *et al.,* Science **300**, 1723 (2003)

radio-frequency spectroscopy

meas. of mol. bind. energy in ⁴⁰K Regal *et al.,* Nature **424**, 47 (2003) rf spectroscopy of ⁶Li: Gupta *et al.,* Science **300**, 1723 (2003)

high B-field

rf spectra in crossover regime

evaporation at 764G, then ramp field to 720G

rf spectra in crossover regime

evaporation at 764G, then ramp field into crossover

837 G: \approx on resonance !

 $T \approx 0.2 T_F$ double-peak structure: atoms and **pairs**

T = 0.0? T_F *pairs only* !

Chin et al., Science '04

rf spectra in crossover regime

evaporation at 764G, then ramp field into crossover

Chin et al., Science '04

Bose-Einstein Condensation of ⁶Li₂

- Production of molecules
- Cooling to condensation

Exploring the BEC-BCS cross-over (varying particle interaction)

- studied cloud size
- excitation of collective oscillations
- pairing gap --- pairing of fermions

Location of the Feshbach resonance

rf spectroscopy

Location of the Feshbach resonance

bound-free dissociation spectra

rf spectroscopy on ⁶Li₂

bound-bound transition

exp. data \rightarrow multi-channel quantum \rightarrow scattering model

 $a_{s} = 45.167(8) a_{0}$ $a_{t} = -2140(18) a_{0}$

s-wave scattering lengths

conclusion

Precise determination of Feshbach position

BEC of ⁶Li₂ molecules

- surprisingly simple to make it
- essentially pure and very long lifetimes
- excellent starting point

BEC-BCS cross-over

- conversion into Fermi gas reversible
- cloud size
- collective excitation
- pairing gap

- interesting effects, e.g. pair breaking
- universality scaling laws

... smoking gun for superfluidity?