

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network "Cold Quantum Gases"

Peter Spoden, Martin Zinner, Norbert Herschbach, Wouter van Drunen

Gerhard Birkl and W.E.

Outline

- Metastable neon
- ³P₂-Lifetime
- Elastic collisions and scattering length
- Inelastic collisions and their suppression
- Evaporative cooling
- Outlook

Neon

Naturally occurring Neon-Isotopes

Abundance [%]	Nuclear Spin
90.48	0
0.27	3/2
9.25	0
	Abundance [%] 90.48 0.27 9.25

 \rightarrow Ne⁺ + Ne + e⁻

Penning-Ionization:

Ne*+Ne*

• Laser-cooling parameters:

Wavelength	640 nm
Doppler limit	200 µK
Recoil limit	2.3 µK

From atomic physics to BEC

Atomic physics

• Lifetime of the metastable state: ? M. Zinner et al., PRA 67, 010501(R) (2003)

Collision physics

- Rates of elastic and inelastic collisions
- Suppression of Penning-Ionization by spinpolarization: 10⁴ ?

Electronic Detection

- Direct, highly efficient detection of Ne* and Ne+
- Real-time detection of ions
- Spatially resolved detection of atoms

Bose-Einstein-Condensation

- Investigation of collective excitations
- Measurement of higher order correlation functions

From atomic physics to BEC

Atomic physics

• Lifetime of the metastable state: ? M. Zinner et al., PRA 67, 010501(R) (2003)

Collision physics

- Rates of elastic and inelastic collisions
- Suppression of Penning-Ionization by spinpolarization: 10⁴ ?

Electronic Detection

- Direct, highly efficient detection of Ne* and Ne+
- Real-time detection of ions
- Spatially resolved detection of atoms

Bose-Einstein-Condensation

- Investigation of collective excitations
- Measurement of higher order correlation functions

Experimental Setup

Lifetime of the metastable state

After Loading the MOT observation of decay by fluorescence

Fluorescence of ²⁰Ne in a MOT

• MOT decay

$$\dot{N} = -\alpha N - \beta \frac{N^2}{V_{eff}}$$

Origins of one-body losses

 $\alpha = \frac{\pi_2}{\tau_2} + \frac{\pi_3}{\tau_3}$ radiative decay

 $+ \gamma \cdot p$

background collisions

 $+ \alpha_{FT}$ finite trap depth

- population of ${}^{3}P_{2}$ -state: π_{2}
- population of ${}^{3}D_{3}$ -state: π_{3}

Background gas collisions: γ·p

• Pressure dependency of MOT decay

- Offset of pressure gauge: 4(7) 10⁻¹² mbar
- Ionization processes:

 $Ne^* + X = Ne + X^+ + e^-$

• Ion signal on MCP:

Influence of finite trap depth

• For an infinitely large MOT:

trap depth and escape velocity become infinite

- therefore: let the gradient B' approach zero!
- In practice:

Trap depth remains finite due to finite size of laser beams

- No significant dependency of α on B'
- No correction needed for low excitation measurements

Lifetime τ_2 of the metastable ${}^{3}P_{2}$ -state

From atomic physics to BEC

Atomic physics

• Lifetime of the metastable state: 14.73(14)s M. Zinner et al., PRA 67, 010501(R) (2003)

Collision physics

- Rates of elastic and inelastic collisions
- Suppression of Penning-Ionization by spinpolarization: 10⁴ ?

Electronic Detection

- Direct, highly efficient detection of Ne* and Ne+
- Real-time detection of ions
- Spatially resolved detection of atoms

Bose-Einstein-Condensation

- Investigation of collective excitations
- Measurement of higher order correlation functions

Preparation of spin-polarized atoms

Doppler-cooling in the magnetic trap

 σ⁺-σ⁺- irradiation in axial direction of magnetic trap

Axial: Doppler cooling Radial: cooling by reabsorption

• Optimized parameters:

Δ = -0.5 ΓI = 5x10⁻³ I_{sat}

• **50**-fold gain in phase space density

Elastic collisions

Cross-dimensional Relaxation

• Kinetic energy is not in equilibrium after Doppler-cooling

• Aspect ratio of the cloud changes

• Determination of the relaxation rate

$$\dot{A} = \gamma_{rel} \left(A(t) - A_{eq} \right)$$

Cross-dimensional Relaxation

 Relaxation rate is proportional to density:

Kinetic energy is redistributed by elastic collisions!

- Description of the relaxation rate
 - $\gamma_{rel} = \sigma_{rel} \,\overline{n} \,\overline{v}$
- Connection to elastic collisions

$$\sigma_{rel} = \frac{\left\langle \sigma_{el} \cdot \mathbf{v}_{rel}^5 \right\rangle_T}{4.24 \left\langle \mathbf{v}_{rel}^4 \right\rangle_T \overline{\nu}}$$

G. M. Kavoulakis, C. J. Pethick, and H. Smith Phys. Rev. A 61, 053603 (2000)

Cross Section of elastic collisions

Centrifugal barrier for d-waves: 5,8 mK

• Interaction potential:

Short range: Long range: S. Kotochigova et al., PRA 61, 042712 (2000) A. Derevianko und A. Dalgarno, PRA 62, 062501(2000)

Cross section:

 $\sigma_{el}(k) = \frac{8\pi}{k^2} \sin^2(\delta_0(k))$

$$\sigma_{ER} = \frac{8\pi a^2}{k^2 a^2 + \left(\frac{1}{2}k^2 r_e a - 1\right)^2}$$

Regime of s-wave-scattering

Relaxation cross section

 $-105(18) a_0$ (or $+14.4 a_0$) ²⁰Ne:

²²Ne: $+150 a_0 < a < +1050 a_0$ Numerical calculation (shown)

 $-120(10) a_0$ or $+20(10) a_0$

+70 $a_0 < a < +300 a_0$ (100 a_0)

Inelastic collisions

Simple model of Penning-Ionization

- Ionization with unit probability below a minimal distance
- Model (Xe*, NIST)

 $\sigma_{ion,l} = \frac{\pi}{k^2} (2l+1) P_T(k,l)$ P_T.. transmission probability

• Result:

 $\beta \sim 2-3 \ 10^{-10} \ \mathrm{cm}^3 \mathrm{s}^{-1}$

Unpolarized atoms

$$\dot{N} = -\alpha N - \beta \frac{N^2}{V_{eff}}$$

 Consideration of excited atoms S+S collisions: K_{ss} S+P collisions: K_{sp}

 $\frac{\text{for small excitation } \pi_{p}}{\beta = K_{ss} + 2 (K_{SP} - K_{SS}) \pi_{p}}$

	²⁰ Ne	²² Ne
K _{ss} [cm³ s ⁻¹]	2.5(8) 10 -10	8(5) 10 ⁻¹¹
K _{sp} [cm³ s ⁻¹]	1.0(4) 10 ⁻⁸	5.9(25) 10 ⁻⁹

Suppression of Penning-Ionization

Dominant loss process in MOT

 $\tau < 1s @ n=10^9 \text{ cm}^{-3} (MOT)$

• Suppression for spin polarized ensembles

Limitation of suppression by anisotropic contributions to the interaction during collisions

> He*: $10^5 \Rightarrow BEC$ Xe*: $1 \Rightarrow \square$ Ne* ?

Exchange process

 $S=1 \qquad S=1 \implies S=0 \qquad S=1/2 \qquad S=1/2$

 $\mathbf{S}_{tot} = \mathbf{2}$ $\mathbf{S}_{tot} \leq \mathbf{1}$

Spin polarized atoms

$$\dot{N} = -\alpha N - \beta \underbrace{\frac{N^2}{V_{eff}}}_{\text{Heating}}$$

Trap loss

Analysis:
$$\dot{N} = -\alpha N - \beta \frac{N^2}{V_{eff}} \longrightarrow \frac{N(t) - N(0)}{\int_{0}^{t} N(t') dt'} = -\alpha - \beta \frac{\int_{0}^{t} \frac{N^2(t')}{V_{eff}(t')} dt'}{\int_{0}^{t} N(t') dt'}$$

²⁰Ne

-0,1 $= 5.3(15) \ 10^{-12} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$ β **Ne** Suppression: 50(20) $\frac{N(t) - N(0)}{\int_0^t N(t') dt'} \left[s^{-1} \right]^{-0,2}$ ²²Ne $= 9.4(24) \ 10^{-12} \ \mathrm{cm}^3 \ \mathrm{s}^{-1}$ β -0,3 - $\frac{\int_{0}^{t} \frac{N^{2}(t')}{V_{eff}(t')} dt'}{\int_{0}^{t} \frac{2 \times 10^{10}}{cm^{-3}}} [cm^{-3}]$ 1x10¹⁰ Suppression: 9(6) $\int^{t} N(t') dt'$

Heating

Inherent heating due to 2-body-losses

 $\dot{N}_{inelast}(r,t) \propto -\beta n^2(r,t)$

 $\frac{\dot{T}}{T} = \frac{1}{4}\beta \,\overline{n}$

- other mechanisms
 - collisions with background gas
 - secondary collisions

Evaporative cooling

Conditions for evaporative cooling

• "Good-to-bad" ratio

 $\mathbf{R} = \frac{\gamma_{el}}{\gamma_{loss}}$ ²⁰Ne: R~5-15
²²Ne: R~30-50

 ²²Ne is better suited for evaporative cooling than ²⁰Ne !

Efficiency parameter

Experimental realization

• Ramp: from 80 MHz to 44 MHz

Trap depth: from 5.5 mK to 1.2 mK Initial cut-off parameter: η =4,5

- variable duration of RF-irradiation
- Observation:

n₀ \ Phase space density ?

Increase in phase space density

Evaporation protocol

- F	RF [MHz]	E _{Trap} [mK]	η
Ramp #1 Ramp #2 Ramp #3	80	5.5	4.5
	44	1.2	2.7
	34	1.0	3.9
	29	0.6	4.5

Initial conditions

 $N = 5 \times 10^{7}$ $n_{0} = 1,3 \times 10^{10} \text{ cm}^{-3}$ T = 1.2 mK $\rho = 1.6 \times 10^{-8}$

Final conditions

 $N = 5 \times 10^{5}$ $n_{0} = 5 \times 10^{9} \text{ cm}^{-3}$ $T = 130 \,\mu\text{K}$ $\rho = 1.9 \times 10^{-7}$

• Efficiency of evaporative cooling

χ≈0.6

Prospects for BEC

• Ne* as compared to Bose-condensed species:

very high loss rates high rates of elastic collisions

• Numerical simulation of optimized evaporative cooling

Results

- Penning ionization (unpolarized, ²⁰Ne) K_{ss} = 2.5(8) 10⁻¹⁰ cm³ s⁻¹ K_{sp} = 1.0(4) 10⁻⁸ cm³ s⁻¹
- Penning ionization (unpolarized, ²²Ne) K_{ss} = 8(5) 10⁻¹¹ cm³ s⁻¹ K_{sp} = 5.9(25) 10⁻⁹ cm³ s⁻¹
- Two-body losses (spin-polarized) ²⁰Ne: $\beta = 5.3(15) \ 10^{-12} \ cm^3 \ s^{-1}$ ²²Ne: $\beta = 9.4(24) \ 10^{-12} \ cm^3 \ s^{-1}$
- Suppression of Penning ionization
 ²⁰Ne: ~ 50
 ²²Ne: ~ 9

• Elastic collisions

²⁰ Ne:	$a = +20(10) a_0 \text{ or } -110(20) a_0$
²² Ne:	+70 a ₀ < a < +1050 a ₀

- Evaporative cooling
 Phase space density x 10
 Efficiency χ~0,6
- Lifetime of the ³P₂-state (²⁰Ne): 14.73(14) s
 M. Zinner et al., PRA 67, 010501(R) (2003)

Outlook

- Continue experiments on evaporative cooling of ²²Ne to highest possible phase space density
- Ion rate measurements with the MCP
- Investigation of collision properties, especially influence of external (magnetic) fields
- Manipulation of Interactions?
- Transfer into an optical dipole trap
- Photo-association spectroscopy

Collisions in cold gases

Interaction potential

- Potential depth: ~20 meV
- Long-range potential:

$$V_{LR}(r) = -\frac{C_6}{r^6} + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$

Elastic Collisions

- Scattering length a: $\sigma_{el,T \to 0} = 8\pi a^2$
- "motor" of evaporative cooling
- Stability of a BEC
- Scattering resonances

Inelastic Collisions

1

• Loss parameter
$$\beta$$
: $\sigma_{inel,T \to 0} \propto \frac{1}{k}$
 $\frac{\dot{N}_{inel}}{N} = -2 \langle \sigma_{inel} \, v_{rel} \rangle_T \, \overline{n} = -\beta \, \overline{n}$

- "brake" of evaporative cooling
- Heating
- Penning-Ionization
- Influence of spin-polarization

Numerical calculation of scattering phases

- Interaction potential
- S. Kotochigova et al., PRA 61, 042712 (2000)
- A. Derevianko und A. Dalgarno, PRA 62, 062501(2000)
- Numerical determination of the s-wave radial wavefunction gives δ_0

 $u_{l}(r) \propto \sin(kr + \delta_{0}(k))$

• Cross section

$$\sigma_{el}(k) = \frac{8\pi}{k^2} \sin^2(\delta_0(k))$$

Relaxation cross sections

Inelastic collisions of metastable neon

Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

Decay rate vs. Gradient II

Problems:

- Theories hold for small saturation
- Models discussed fail to explain the data quantitatively
- Ionizing background collisions