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Outline

• The (mean-field theoretic) model and its limitations

• Long-wavelength instabilities in BECs

• Modulational Instability
• Time-independent setting (attractive BECs) - Bright Soliton trains
• Time-dependent setting: Feshbach Resonance Management 

(repulsive/attractive BECs) - Matter Wave Breathers

• Transverse (“Snaking”) Instability of dark soliton stripes 
(repulsive BECs) - Vortices and vortex arrays

• Derivation of relevant instability thresholds
(based on length-scale competition arguments)



Some details

• The mean-field approximation
• Description of the BECs for: T → 0, no fluctuations, low-dimensional (quasi-

1D and quasi-2D) systems (relevant to experiments)

• Description of instabilities and patterns (solitons, vortices) with the relevant 

GPEs, for time-scales comparable to the lifetimes:  “Signatures” of the 

predicted phenomena are expected to be observable.

• Long-Wavelength instabilities and related patterns
• Modulational Instability for quasi-1D attractive BECs:

Plane wave solution of the NLS equation becomes unstable, resulting to the 
formation of a pattern consisting of a “train” of bright solitons.

• Transverse Instability for 2D/3D repulsive BECs:

Dark soliton stripes undergo transverse “snake” deformations, giving rise to 
vortices and vortex patterns (“vortex necklace”).



The mean-field model

• The effective dimensionless GP equation (in quasi-1D)

• x in units of  : 

• t in units of  :        

• ψ in units of :

Typically (e.g., for a sodium BEC) :
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Modulational Instability in untrapped BEC’s

• Plane wave solution:

• Dispersion Relation:

• Instability Band:

Unstable case 
(Q=1)

Stable case 
(Q=2)

,



The effect of linear or quadratic potentials

• Tappert transformation:

brings back to the NLS

• Lens transformation:

transforms GPE to the NLS
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In both cases MI condition does not change Phys. Rev. A 67, 063610 (2003);
Mod. Phys. Lett. B 18, 173 (2004).



Examples (quadratic potentials)

• Initial condition:
(similar to the Texas and Paris experiments)

Unstable case (Q=1) Stable case (Q=2)Unstable case (Q=1) Stable case (Q=2)

Length (time) scale: 0.6 µm (0.1 ms)



Modulational Instability threshold

(we set g = -1)

• In the presence of the magnetic trap, MI is avoided when the TF diameter

• This occurs when :                         or   

Phys. Rev. A 70, 023602 (2004); Mod. Phys. Lett. B 18, 173 (2004).
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Time-dependent settings:
Feshbach Resonance Management (FRM)

• The model:

• Analogy with “Dispersion Management ” in Nonlinear Fiber Optics 

(periodic alternation of fibers with opposite signs of group-velocity dispersion)

• The uniform solution is subject to MI
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Length (time) scale: 
1 µm (0.3 ms)

Phys. Scripta T107, 27 (2004).



Robust FRM Solitons:
Bright and Dark Matter-Wave Breathers

Phys. Rev. Lett. 90, 230401 (2003); Phys. Scripta T107, 27 (2004).

Bright Soliton Dark Soliton

Length (time) scale: 1 µm (0.3 ms)



Averaging for Solitons with 
Nonlinearity Management

• The model:

• The transformation: 

• The effective (averaged) NLS equation (with const. coefficients):

Phys. Rev. Lett. 91, 240201 (2003); Phys. Rev. E, in press (2004)
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Transverse (Snaking) Instability of Dark
Solitons in quasi-2D (“pancake”) BECs

• The normalized GPE (radially symmetric trap):

• The dark soliton stripe (untrapped BEC):

Black Soliton Gray Soliton
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Condition for transverse instability

(for µ = 1)

Instability band can be suppressed if 

• The TF diameter                                is :

or

(“Trap engineering”)

• The dark stripe is bent so as to form a ring of length 

L < 2π/Qcr RING DARK SOLITON
(“Soliton engineering”)
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“Trap engineering” for suppression / 
onset of Transverse Instability

• Ω=0.35: TI is suppressed   [t = 1000 (or 180 ms)]
• Ω=0.15: TI manifests itself [for t ~150 (or 27 ms)]

• Phys. Rev. A 70, 023602 (2004); Mod. Phys. Lett. B 18, 173 (2004).

Length (time) scale: 0.7 µm (0.18 ms)



“Soliton Engineering” : Ring Dark Solitons

• Approximate solution of the GPE:

where: 

Phys. Rev. Lett. 90, 120403 (2003)

Length scale: 0.4 µm 



Dynamics of Ring Dark Solitons

Moving (gray) RDS 
at Rmax : no TI

Moving (gray) RDS 
at Rmin : no TI

t =  10 ms t =  40 ms

t =  15 mst =  10 ms

Stationary (black) 
RDS: subject to TI



The “vortex necklace”

Phys. Rev. Lett. 90, 120403 (2003)
Length scale: 0.4 µm

t =  30 ms t =  60 ms

t =  105 ms t =  135 ms 



The “OLYMPIC” Soliton 
(Athens 2004)

M. Oberthaler, G. Theocharis



Conclusions and Outlook

• Within the limitations of the mean-field theoretical approach : 

• MI for quasi-1D BECs soliton trains, breathers
• TI for repulsive quasi-2D BECs vortices, vortex arrays

• It is of interest to investigate :

• Effects of thermal and quantum fluctuations
• The feasibility of experimental verification of the 

existence/stability/dynamics of the predicted patterns
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