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Background

Vortices in BEC

• BEC as a giant matter wave • Vortices as holes in the density profile
of the condensate (MIT,2001)
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Highlights

• Problem: Explanation of Nucleation of Vortices in a finite domain
via edge states [1, 2].

• Experimental motivation: Recent Experiments done at JILA, ENS,
MIT [4, 5, 6] on vortices in BEC.

• Relevant theoretical work: Work done on the surface excitations in
BEC by Stringari and collaborators, J. Anglin, U.A.Khawaza et. al.
[8, 9, 12, 13] and others.

• Technique (Linear) Schrödinger equation of a rotationg trapped
bosons in a disc has been solved with a set of non-local and chiral
boundary conditions. These boundary conditions naturally split
the Hilbert space in the bulk and the edge states [1, 3].

• Main result Critical Frequency of first Vortex nucleation. Change
in the condensate size with faster rotation [1].

1 Theoretical Background

1.1 Superfluid under rotation
For a rigid-body v = Ω× r ⇒∇× v = 2Ω

Superfluid (Mean-field) Order Parameter Ψs =
√
ρ(r, t)eiS(r,t)

Superfluid velocity vs(r, t) = ~
m∇S(r, t)⇒∇× vs = 0

In a cylinder S(~r, t) = lθ ⇒ vs = ~
m
l
r θ̂∮

vs.dr = 2πl ~m
• This is a consequence of the fact that∇× vs = 2πl ~

m
δ2(r⊥)ẑ

• The vortex state is characterized by l 6= 0.

• If the number of particles is N the vortex carries total angular momentum Lz =
Nl~.

• Thermodynamic critical frequency Ωc is obtained by minimizing F = ELab −
ΩLz ⇒ Ωc = ELab

Nl~ .

1.2 Effect of Finite Geometry on Ωc• Experimentally observed range for Ωc (for the first vortex)→ 0.1ω⊥ to
0.7ω⊥ and is higher than the thermodynamic critical frequency.

• Vortices are nucleated from the surface in a finite system. This effects
the critical frequency of vortex nucleation as well as the mechanism of
vortex nucleation.

• Initially higher angular momentum states are all localised at the
boundary and there is a surafce potential barrier on the way to vor-
tex nucleation.

• The role of these surface states and the barrier is qualitatively similar to
that of the Meissner currents at the surface of a finite superconducting
system. This is true even though the rotaion plays a kinematic role in
the Gross-Pitaevskii theory rather than the dynamic role of a magnetic
field in the Landau-Ginzburg theory

• Our approach to the problem of vortex nucleation identifies these sur-
face (edge)states in a two-dimensional geometry by noting the chirality
of the probability current in the edge and bulk region.

• A vortex is nucleated when the angular momentum is transferred from
the edge to bulk.

Theoretical Framework

2 Spectrum of Schrödinger Equation

2.1 Schrödinger equation in a rotating frame

• Time-independent Gross-Pitaevskii equation(
−~2∇2

2m
− µ+ Vext + g|Ψs(r)|2

)
Ψs(r) = 0

• In the rotating frame is becomes(
−~2∇2

2m
− µ+ Vext + g|Ψs(r)|2 − ΩLz

)
Ψs(r) = 0

• We solve the linear part of the above equation in two dimensions.

H = p2

2m + 1
2mω

2
⊥r

2 − ΩLz

define, Av = ω⊥ × r with ω⊥ = (0, 0, ω⊥)

⇒ H = 1
2m (p−mAv)2 + (ω⊥ − Ω)Lz

Alternatively define, AΩ = Ω× r with Ω = (0, 0,Ω)

⇒ H =
(

1
2m (−i~∇−mAΩ)2 + 1

2m(ω2
⊥ − Ω2)r2

)

2.2 Spectrum in the infinite plane

• Ψn,l(r) = Cn,lr
|l|eilθe−

bω⊥ r
2

2 1F1(a, |l|+ 1; bω⊥r
2)

• En,l = ~ω⊥(2n+ |l| − Ω
ω⊥
l + 1), n ∈ N, l ∈ Z

ω⊥ = Ω corresponds to the Landau problem with ω⊥ = 2ωc.
Also bω⊥ = m

~ ω⊥, bΩ = m
~ Ω, Φ = bω⊥R

2, ΦΩ = bΩR
2.

2.3 Spectrum in a disc with radius R

Dirichlet Boundary Condition (DBC)

1F1(a, |l|+ 1,Φ) = 0

Chiral Boundary Condition (CBC)
The current density in a given eigenstate is

j = ~
2mi (Ψ

∗
n,l∇Ψn,l −Ψn,l∇Ψ∗n,l − 2im~AΩ|Ψn,l|2)

The nonvanishing azimuthal component is

jθ = ~
m ( lr − m

~ Ωr)|Ψn,l|2

• For r <
√

l
bΩ

it is positive and paramagnetic.

• For r >
√

l
bΩ

it is negative and diamagnetic.

The current flows with a different chirality in regions sep-

arated by a ring with radius rl =
√

( l
ΦΩ

). We define the
bulk and edge regions using this particular value of rl as a
reference for a given angular momentum.

The chiral boundary condition is defined as:
If λ ≥ 0 which implies 0 < ΦΩ ≤ l (edge states)

∂rψn,l|R = 0 (1)

If λ < 0 which implies l < ΦΩ (bulk states)

(
∂

∂r
+

i∂

r∂θ
+ bΩr)Ψn,l|r=R = 0 (2)

.

Results

3.1 Spectrum with DBC and CBC

• Spectrum with DBC. Plots for n = 0
and n = 1 with first few l states. Ω =
0.75ω⊥

• Spectrum with CBC. Plots for n = 0
and n = 1 again for first few l states.
Ω = 0.75ω⊥
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3.2 Bulk and Edge states with DBC and CBC

• Plots for n = 0 and n = 1 with first
few l states Ω = 0.75ω⊥

• Spectrum with CBC. Plots for n = 0
and n = 1 and ΦΩ = 15, Ω =
0.75ω⊥
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3.3 Vortex Nucleation with CBC

• From bottom-left picture counterclock-
wise the bulk + edge spectrum corre-
sponds to Ω

ω⊥
= 0.25, 0.50, 0.75, 1

are shown respectively .Each fig. cor-
responds to ΦΩ = 1, 2, 3

• The top and bottom set of figures cor-
respond to Ω

ω⊥
= 0.36, 0.35. On

the left hand side the region near point
of intersection of two spectrum corre-
sponds to ΦΩ = 1, 2 is zoomed in.
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3.4
successive vortex Nucleation, Size variation

• Nucleation frequencies of successive (l =
1) vortices. (Above)

• Nucleation frequencies of multiple vor-
tices. In parentheses we mention the angu-
lar momentum states which are transferred
from the edge to the bulk at these values of
Ω.(Below) • Change in the size of the condensate

with increasing rotational frequency.

� � � � � � ��
� 	 � 
 � � 
���
 � � �
� � � 
 � � � � 
 � � �
� � � 
 � 
 � � 
 � 
 �
� � � 
 � 
 � � � 
 � 
 �

 � � 
 � � 
 ����
 � � 
 �
� � � 
 � � � ����
 � � � 


��� � � � ��
	 �  � � 	�� �  � 	 � � � � � �
� ��� � �"! # $ %
�'& � ( � ) 
 � � ����
 � � 

�'& � ( � ( � ) 
 � � * � 
 � � �
��& � ( � ( � ( � ) 
 � � � � � 
 � � � 


'& � ( � ( � ( � ( 
 ) 
 � � � * � 
 � � � �

0.27 0.37 0.47 0.57
Ω/ω

1.5

2

2.5

3

r c
 a

n
d

 t
h

e
 b

u
lk

  
ra

d
iu

s

Discussion

4 Summary

• The problem of vortex nucleation is studied within the framework
of independent bosons satisfying the linear Schrödinger equation
with a set of non-local and chiral boundary conditions.

• These boundary conditions split the one particle Hilbert space into
a direct sum of two orthogonal, infinite dimensional spaces with pos-
itive and negative chirality on the boundary. They correspond to
bulk and edge states respectively. The chirality is determined from
the direction of the azimuthal velocity on the boundary.

• The vortex nucleation is then interpreted as a transfer of angular
momentum from the edge to the bulk.

• Physically our procedure resembles the edge to bulk quasiparticle
transport in Quantum Hall effect suggested by Laughlin (1981) and
Halperin (1982)[11]. The role of the edge states is similar to those of
the Meissner states in a finite superconducting systems.

• The calculated critical frequency of first vortex nucleation lies in
between 0.35ω⊥ and 0.36ω⊥.

• We have also studied the vortex nucleation at frequencies higher
than the critical frequency of the first vortex nucleation.

• The size variation of the bulk region demonstrated is qualitatively
similar to shape deformation and associated angular momentum
transfer under a rotational perturbation suggested by Stringari and
others [9, 10] as a possible mechanism of vortex nucleation. How-
ever here it is demonstrated for a circular geometry whereas in ex-
periment the system is generally elliptical

• Unlike the infinite system a finite Bose-Einstein system has a sur-
face energy and the corresponding surface tension. With the varia-
tion of condensate size this surface tension will also vary and may
have observable consequences.
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