Vortices Nucleation in Finite Bose-Einstein Condensates through edge states
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BEC as a giant matter wave

e Vortices as holes in the density profile
of the condensate (MIT,2001)

Highlights

Problem: Explanation of Nucleation of Vortices in a finite domain
via edge states [1, 2].

o Experimental motivation: Recent Experiments done at JILA, ENS,
MIT [4, 5, 6] on vortices in BEC.

Relevant theoretical work: Work done on the surface excitations in
BEC by Stringari and collaborators, J. Anglin, U.A Khawaza et. al.
[8,9, 12, 13] and others.

Technique (Linear) Schridinger equation of a rotationg trapped
bosons in a disc has been solved with a set of non-local and chiral
boundary conditions. These boundary conditions naturally split
the Hilbert space in the bulk and the edge states [1, 3].

e Main result Critical Frequency of first Vortex nucleation. Change
in the condensate size with faster rotation [1].

2 Spectrum of Schrédinger Equation

2.1 Schradinger equation in a rotating frame

o Time-independent Gross-Pitaevskii equation
(~5552 = ot Ve + 910 (1)) Wa(r) = 0

2m

o In the rotating frame is becomes
(1557 — lt Ve + glWa () — QL) Wo(r) = 0

2m

e We solve the linear part of the above equation in two dimensions.
H= % + %mwirz —QL,
define, Ay =w, xrwithw,; = (0,0,w,)
= H=35-(p—mA)* + (w1 —Q)L.
Alternatively define, Ag = Q x r with Q = (0,0,9)

= H = (5 (—ihV —mAg)? + m(w? — Q*)r?)

3.1 Spectrum with DBC and CBC
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2.2 Spectrum in the infinite plane

b T2
o U, (1) = Cryrlle®e™ 2 1 Fi(a, || + 1; b, )

o Bpi=hwi@n+l|— 2i+1),neNI€Z

w1 = Q corresponds to the Landau problem with w; = 2w..
Also by, = Twy, bo = 2Q, & = b, R?, &g = boR’.

3.2 Bulk and Edge states with DBC and CBC
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4 Summary

o The problem of vortex nucleation is studied within the framework
of independent bosons satisfying the linear Schrédinger equation
with a set of non-local and chiral boundary conditions.

o These boundary conditions split the one particle Hilbert space into
a direct sum of two orthogonal, infinite dimensional spaces with pos-
itive and negative chirality on the boundary. They correspond to
bulk and edge states respectively. The chirality is determined from
the direction of the azimuthal velocity on the boundary.

o The vortex nucleation is then interpreted as a transfer of angular
momentum from the edge to the bulk.

Physically our procedure resembles the edge to bulk quasiparticle
transport in Quantum Hall effect suggested by Laughlin (1981) and
Halperin (1982)[11]. The role of the edge states is similar to those of
the Meissner states in a finite superconducting systems.

o The calculated critical frequency of first vortex nucleation lies in
between 0.35w, and 0.36w .

e We have also studied the vortex nucleation at frequencies higher
than the critical frequency of the first vortex nucleation.

o The size variation of the bulk region demonstrated is qualitatively
similar to shape deformation and associated angular momentum
transfer under a rotational perturbation suggested by Stringari and
others [9, 10] as a possible mechanism of vortex nucleation. How-
ever here it is demonstrated for a circular geometry whereas in ex-
periment the system is generally elliptical

o Unlike the infinite system a finite Bose-Einstein system has a sur-
face energy and the corresponding surface tension. With the varia-
tion of condensate size this surface tension will also vary and may
have observable consequences.

1 Theoretical Background

1.1 Superfluid under rotation
For arigid-body v = Q x r = V x v =2Q
Superfluid (Mean-field) Order Parameter ¥, = \/p(r, )’
Superfluid velocity v,(r,t) = %VS(r,t) =V xvs=0
Inacylinder S(7,t) =10 = v, = %%é
$vs.dr =2nl L

This is a consequence of the fact that V x v, = 2al25%(r )2
The vortex state is characterized by I # 0.

If the number of particles is N the vortex carries total angular momentum L. =
Nih.

Thermodynamic critical frequency . is obtained by minimizing F' = Epa, —

QL. = Q. = Zzar,

1'% Egggr%g'l a l}lfrg)g::;%r\(fég %g]gg¥gYQ? r(}og')ﬁle first vortex) — 0.1w, to

0.7w and is higher than the thermodynamic critical frequency.

Vortices are nucleated from the surface in a finite system. This effects
the critical frequency of vortex nucleation as well as the mechanism of
vortex nucleation.

Initially higher angular momentum states are all localised at the
boundary and there is a surafce potential barrier on the way to vor-
tex nucleation.

The role of these surface states and the barrier is qualitatively similar to
that of the Meissner currents at the surface of a finite superconducting
system. This is true even though the rotaion plays a kinematic role in
the Gross-Pitaevskii theory rather than the dynamic role of a magnetic
field in the Landau-Ginzburg theory

Our approach to the problem of vortex nucleation identifies these sur-
face (edge)states in a two-dimensional geometry by noting the chirality
of the probabilitv current in the edee and bulk region.

2.3 Spectrum in a disc with radius R

Dirichlet Boundary Condition (DBC)
1F1((l, ‘ll + 1, (I)) =0
Chiral Boundary Condition (CBC)

The current density in a given eigenstate is
5= (0 Vi — W, VU — 2% Ag| T, )
The nonvanishing azimuthal component is

Jo = p (5 = )| Wy
e Forr <,/ % it is positive and paramagnetic.

e Forr >,/ % it is negative and diamagnetic.

The current flows with a different chirality in regions sep-
,/(é). We define the
bulk and edge regions using this particular value of r; as a
reference for a given angular momentum.

arated by a ring with radius r, =

The chiral boundary condition is defined as:
If X > 0 which implies 0 < ® < I (edge states)

O thni|lr =0
If X < 0 which implies I < ®q (bulk states)

or 1o

+ bar)Wolr—r =0

™
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3.3 Vortex Nucleation with CBC
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. FromI bottom-left picture counterclock- e The tdp and bottom set of figures cor-
wise the bulk + edge spectrum corre- respond to - = 0.36,0.35. On
Q _ L
sponds to &= = 0.25,0.50,0.75, 1 the left hand side the region near point
are shown respectively .Each fig. cor- of intersection of two spectrum corre-
responds to o = 1,2,3 sponds to P = 1, 2 is zoomed in.

3.4
successive vortex Nucleation, Size variation
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r.and the bulk radius

o Nucleation freq

ies o)
1) vortices. (Above)

o Nucleation frequencies of multiple vor- b 037 047 057
tices. In parentheses we mention the angu- Qo
lar momentum states which are transferred
from the edge to the bulk at these values of

Q.(Below) e Change in the size of the condensate

with increasing rotational frequency.
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