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Topics:

1. What is a Feshbach resonance, really?  (And what is not.)

2. Atom-molecule condensate oscillations in a Bose gas

3. Feshbach resonance cooling of two trapped atoms

4. Pair formation in a degenerate Fermi gas with attraction

5. Sub-Doppler laser cooling of a fermionic alkaline earth gas



This talk is an overview of the behavior 
of the two-body scattering and bound 

state properties that arise in the vicinity 
of a low-energy Feshbach resonance.  It 

is aimed at clarifying what aspects of 
the two-body physics must be 

incorporated in order to correctly 
describe many-body phenomena in 

Bose-Einstein condensates or 
degenerate Fermi gases.

Three-body physics I will NOT talk about today:



A new class of ultra-long-range Rydberg molecules predicted
Shape-resonance-induced long-range molecular Rydberg states, E Hamilton and C Greene, 
J Phys. B Letter, May 2002.  (Also Greene et al. PRL, Sept. 2000)

“Butterfly” and “Trilobite” Rydberg molecules (with one Rydberg alkali atom and one 
ground state atom)



Motivation: the 85Rb – 85Rb Feshbach resonance near B=155 
Gauss

Note that the “resonance”, as defined by where the bound state 
portion of the wavefunction is a maximum, does not lie at zero 
energy at 155G, even though that is the field where a new bound 
state appears.

New bound state appears at 155 Gauss

Calculated positions of the Feshbach resonance 
as a function of magnetic field B



Historical Overview
1. O. K. Rice, JCP 1, 375 (1933) – basic treatment of how a bound state autoionizes

into a degenerate continuum

2. U. Fano, Nuovo Cimento 12, 156 (1935) – shows that quantum interference has 
opposite signs above and below the resonance, leading to asymmetric line profiles 
analogous to anomalous dispersion.

3. H. Beutler, Z. Physik 93, 177 (1935) – experimental observation of highly asymmetric 
line profiles in rare gas photoionization spectra

4. G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936) – Basic formula developed for 
symmetric resonance profile when only the “bound part” of the reaction dominates –
i.e., showing no asymmetry in this case.

5. Other nuclear theorists treat interference of “direct path” and “resonance path” for 
scattering, giving Beutler-Fano-type asymmetric lineshapes, e.g. Blatt & Weisskopf, 
Theoretical Nuclear Physics, 1952.

6. H. Feshbach, Ann. Phys. 5, 357 (1958) and 19, 287 (1962) – developed general 
projection operator formalism that cleanly separates “bound” and “continuum” 
subspaces and systematically treats their interaction.

7. U. Fano, Phys. Rev. 124, 1866 (1961) – more elegant reformulation of his 1935 
theory of asymmetric line profiles from discrete-continuum interactions

8. P. Anderson, Phys. Rev. 124, 41 (1961) – model of localized impurity state in a 
continuous band.



Feshbach resonances in neutron-sulfur scattering, from Blatt&Weisskopf, 1952

For a review showing many Feshbach resonances seen in photoionization, see 
Aymar, Greene, and Luc-Koenig, Rev. Mod. Phys. 1996.







Behavior of scattering length versus well depth for a potential D sech2(r), 
Poschl-Teller potential.  

This is a single-channel problem, with no Feshbach resonances.



Note: The above development is all for a single channel possessing no 
Feshbach resonances.  

In practice, what usually ALLOWS the scattering length to be TUNABLE is 
the nearby proximity of a Feshbach resonance whose position is B-field 
dependent, which means that     a=a(B)

So, the question remains, WHAT IS A FESHBACH 
RESONANCE?

ANSWER:  A Feshbach resonance is the presence of a 
temporary trapping of the system at short range, in a different 
configuration.  In particular the trapping of the system should 
be (at least) somewhat longer than the time it takes a particle 
to come in and go out in a nonresonant, ordinary single-
channel collision.





Let’s look at the 85Rb-85Rb
Feshbach resonance in 
more detail.

The S-wave scattering 
phaseshift for 85Rb-85Rb at 
B=135 G, as a function of 
energy in MHz.

The energy derivative of 
the S-wave phaseshift at 
B=135 G versus the 
energy in MHz.  
Scattering theory defines 
the “resonance position” 
as the energy at which 
this curve is a local 
maximum.



The S-wave scattering 
phaseshift for 85Rb-85Rb at 
B=155 G, as a function of 
energy in MHz.

Energy (MHz)

Energy (MHz)

The energy derivative of 
the S-wave phaseshift at 
B=155 G versus the 
energy in MHz.  
Scattering theory defines 
the “resonance position” 
as the energy at which 
this curve is a local 
maximum.



A study of the 85Rb – 85Rb Feshbach resonance near B=155 
Gauss

Note that the “resonance”, as defined by where the bound state 
portion of the wavefunction is a maximum, does not lie at zero 
energy at 155G, even though that is the field where a new bound 
state appears.

Molecular bound state, 
disappears at B=155 G



Comparison of 3 different ways of describing the 85Rb-85Rb 
scattering length, near the magnetic field (B=155G) where a new 
bound state arises.



The main result of this multichannel effective range theory is that for 
sufficiently low energies, close to the point B0, the scattering 
phaseshift is accurately given throughout the nearby complex E,B 
planes by the expression:

The main way this differs from the expression usually adopted in
ultracold collisions and BEC studies is the presence of an energy 
dependent resonance slope in the resonance denominator.  The slope    
is typically of order 0.2 to 0.5 Gauss/MHz.

γ



Let’s examine a two-channel model for which there IS a 
Feshbach resonance, and see what is the interconnection 
between the scattering properties, the molecular bound state 
properties, and the resonance.

Note:  Can solve this model problem 
exactly by diagonalizing the above 
constant matrix, and then matching 
the trigonometric solutions at r<r0 to 
a scattering solution at r>r0 in 
channel 1 and a decaying solution in 
channel 2.



The solution at r>r0 thus has the form:

And we can solve exactly for the S-matrix:

Because the closed channel threshold is assumed to be so 
far away in energy, we can extract the ultracold scattering 
behavior by using a linear expansion of the closed channel 
wavenumber in energy and in magnetic field,



The poles of this S-matrix in the complex k-plane or energy-plane 
are now readily determined as the roots of a cubic equation, for
any chosen B-field (written in terms of B’=B-Bo.  Note that B’=0 is 
the point where the new bound state appears or disappears:

There are just 3 different real parameters that control the behavior of 
these S-matrix poles in the complex plane which determine the interplay 
of molecular bound states, resonances, and virtual states:



This plot is from the time-delay 
analysis of 85Rb-85Rb at real 
energies only

virtual 
states

Feshbach resonance

Bound state

The plots on the left are from 
a 2-channel treatment, 
looking at the S-matrix poles 
in the complex energy plane.

Bound state

virtual state



While the predictions of this Marcelis et 
al. paper initially appeared to be 
inconsistent with our conclusions, we 
have seen that their results can be 
reproduced by changing the way we 
search for resonance poles.  Instead of 
looking for complex E-poles at real B, we 
must look for complex B-poles of S, at 
real E.

However, we do not agree that an “extra” 
resonance must be added to the open 
channel when the background scattering 
length is large and negative.

Or, search for maxima in d(delta) /dB 
rather than d(delta) /dE



Dispelling some myths about low energy Feshbach resonances:
Myth #1.  The “Feshbach resonance” occurs when the 
scattering length goes to Infinity.

Reality:  Even 1-channel models having NO RESONANCES still 
possess points where a(B) infinity, whenever the last bound state 
disappears

Myth #2.  In a problem that involves a true Feshbach resonance in a closed 
channel, when a NEW bound state appears for the molecule, its wavefunction is 
mostly in the higher closed channels.

Reality:  The two-channel effective range description, confirmed by 
detailed, realistic coupled channel calculations, shows that the
LOWEST CHANNEL component is the dominant one as 
Asc +infinity.  (The higher channel component probabilities fall 
off in proportion to 1/Asc.)

An implication:  This makes it difficult to extract 
“molecular populations” from diabatic field theory 
descriptions, owing to their inherent nonlinearity.



Myth #3.  The Feshbach resonance lifetime 1/Gamma diverges as 
1/sqrt(Eres) when the Re(Eres) 0.

Reality:  The decay width remains finite right down to the point
where the true resonance energy crosses E=0.  Close to the point
where the resonance energy crosses zero, it does have a cusp and
typically bifurcates into two virtual states.  The bifurcation point is 
where the width of the resonance actually vanishes.



2002 JILA 
Experiment with 
N=17,000 Rb atoms 
subjected to B-field 
ramps that change a





Some relevant theory papers:





See, e.g.:

Tiesinga et al., PRA 61, 063416 (2000); 

Blume, Greene, PRA 65, 043613 (2002);

Bolda, Tiesinga, Julienne, PRA 66, 013403 
(2002).  



Determines exact 2-atom energy 
levels in the trap, while the 
following formula determines the 
projection of an eigenstate at one 
value of a(B) onto an eigenstate at a 
different a(B’):



Two-Particle Energy Levels: ϖ/2π = 3.5kHz
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Trap ground state

Molecular state

Perform time-dependent calculation:
At time t=0: Initial state is chosen to be lowest trap level.
Apply a sequence of magnetic field pulses [two-body Hamiltonian
becomes time-dependent through scattering length term a(B(t))].



Sequence of Field Pulses
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Bf

Bevolve

60 µsec

Just like the field pulses in JILA 
experiment 
Donley et al., Nature 417, 529 (2002)
– but we’re only treating two 
atoms!
Kokkelmans,Holland, PRL 89, 
180401 (2002); Kohler, Gasenzer, 
Burnett, PRA 67, 013601 (2003); and 
others have treated this via field 
theory methods.

Time propagation for
instantaneously 
changed field pulses 
(sudden approximation)
gives us occupation 
probability of energy 
states as a function
of time.

Magnetic
field 
sequence:

Bm

tevolve

(varied)

Bm



Derivation of the quantum beats between atomic and 
molecular modes as a two-state system



End-of-the-Pulse Occupation Probability of 
States: Quantum Beats

10 15 20 25 30 35 40
t
evolve

 (µs)

0

O
cc

up
at

io
n 

pr
ob

ab
ili

ty

Population of 
molecular level

Population of lowest
trap level (BEC)

Population of excited
trap levels

Coherent atom - molecule quantum beats: Interference of quantum paths that 
go through the “intermediate” molecular state with those that go through the 
“intermediate” ground trap state (excited trap states).



Numbers of Molecules, Condensate Atoms, and Excited Atoms 
following the sequence of magnetic field ramps

Present 2-atom theory 2002 JILA Experiment in Nature magazine 
with 17,000 Rb atoms



Mapping: From a Two-Body 
System to the Many-Body System 
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Above resonance:
Condensate atoms Non-condensed atoms: “Hot jet of atoms”

in JILA experiment

Trapping frequency of two-atom simulation is chosen such that peak 
density in two-atom system equals that of the experiment (to first order, 
diluteness parameter N(a/aho)3 ):

Experiment: ν = 10.9Hz, N = 17100 Model: ν = 3.5kHz, N = 2



Population as a Function of Time 
for one Double-Pulse Sequence

Condensate
population: Ground
state atoms

“Hot atoms”:
Excited atoms
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We can watch the molecule population throughout the magnetic 
field sequence: Our molecules are truly molecules!



Summary of the two-body picture
• Two-atom study does a good job of reproducing 

experimental 85Rb BEC results near a Feshbach 
resonance qualitatively, and even semi-quantitatively.

• Nice, simple complement to mean-field type studies.
• Seems to suggest that near a Feshbach resonance, 

much of the physics is two-body in nature. 
• Borca, Blume, Greene, cond-mat/0304341, or New Journal of Physics 5, 

111 (2003).

•Deficiencies:  The main one is that the oscillator levels are more 
widely spaced, causing energy estimations to deviate from experiment.



Pair formation in a degenerate Fermi gas
Collaborator:  Javier von Stecher

Questions

In the range of large negative scattering lengths, are the pairs “really 
molecules” in some sense?  

Do they have a well-defined binding energy and size?  

Can one write an effective Schroedinger equation for two fermionic
atoms, and include their interactions nonperturbatively, in the 
BEC-BCS crossover region?

Our method of attack
1. Single particle (Thomas-Fermi) description of a degenerate Fermi gas 

with two spin components.

2. 2 fermions interacting with each other and with the mean field produced 
by the DFG.

3. Use of pseudopotentials to enforce Pauli blocking

4. Pair formation in 40K-40K near the scattering length pole.



The 40K-40K Fesbach resonance and its avoided crossing with a deeply-
bound molecular state – Viewed from a large scale, the “resonance” turns 
into a bound level



The case of 
fermionic
potassium, 
studied in 
recent 
experiments 
by D. Jin, M. 
Greiner, C. 
Regal

Feshbach 
resonanceNew molecular 

bound state

Virtual 
states

Resonance width is still nonzero at 
the point where the resonance 
crosses zero energy, at around 206 
Gauss in 40K.



Note:  All the “action” in the 
new Jin group experiment is 
within about 0.5 Gauss of the 
creation point for the new 
molecular bound state



Increasing Attraction between the two fermions



Straightforward description of the DFG at the single-particle level

Note that one should 
probably switch over, for 
fields very close to the 
pole, to a DFG 
description based more 
on the “unitarity limit”, of 
the type discussed by 
Pandharipande and 
others.



A proposed “Schroedinger Refrigeration” scheme that 
can cool atom pairs in a thermal gas, e.g. in an optical 

lattice



Energy levels of two 85Rb atoms, trapped in a spherical oscillator 
potential, in the relative degree of freedom, versus magnetic field.
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