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ABSTRACT We discuss ferromagnetism in spinor Bose gases with effective ferromagnetic (FM) couplings between particles. Some basic problems, including interplay between the FM transition and
Bose-Einstein condensation, the low-lying collective excitations as Goldstone modes, and the structure of the ground state, are considered. We show on the mean-field level that the FM transition occurs above
Bose-Einstein condensation. Under the spin conservation rule, the FM transition corresponds to the domain formation. Our results can be applied to the ultracold 87Rb gas and magnetic dipolar gases.

Ferromagnetism: an overview [1]

Weiss molecular-field theory: for classical particles

• The model
H = −I

∑
〈ij〉Si · Sj

– Introducing the molecular-field: M = 〈Si〉 = 〈Sj〉
– Decoupling the interaction:

Si · Sj ≈ 〈Si〉 · Sj + Si · 〈Sj〉 − 〈Si〉 · 〈Sj〉 = 2MSz
i − M2

• The result

– The molecular-field energy:
(z-the coordination number)

Em = 〈H〉 = −zNIM2 ≤ 0

– The FM transition point:
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Stoner mean-field theory: for fermions

•M increases the band energy due to the Fermi surface splitting:

Eb =
M2

4µ2
BN(εF )

N(εF )−the density of state

•M leads to a negative molecular-field energy density:
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2
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•The Stoner criterion results,
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•The transition temperature:
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Spin waves as Goldstone modes

•The spin-wave in Heisenberg ferromagnets:

ωk = Dk2, D = ISa2 a−the lattice constant

•The spin-wave in fermionic ferromagnets:

ωk = Dk2

with the spin-wave stiffness
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• Summary: ωk ∼ k2

gapless at k = 0

Ferromagnetism in spinor Bose gases in the thermodynamic limit [2,3]

Phase diagram: a microscopic model [2]

• The model Hamiltonian:

H = −t
∑
〈ij〉σ

ψ
†
iσψjσ − I

∑
〈ij〉

Si · Sj

• Suppose 〈S〉 = (0, 0, 〈Sz〉) = (0, 0,M), then we arrive at the
mean-field Hamiltonian:

H =
∑
kσ

(εk − σHm)nkσ

with the kinetic energy εk = �
2k2/2m∗. m∗ is the mass of the

particle. Hm = IM is the molecular field.

• The mean-field equations are given by

n =
N

V
=

1

V

∑
k

〈nk,1 + nk,0 + nk,−1〉 (1)

Hm = I
1

V

∑
k

〈nk,1 − nk,−1〉 (2)

• The relation between the chemical potential a and the coupling
Im for small Im

a ≈ 4π

(3ζ[32])
2
3

I2
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where a and Im are rescaled as

a = −(µ + Hm)/(kBT ), Im = In1/3m∗/(2π�2)

It means that an infinitesimal FM coupling can induce
a FM phase transition at a finite temperature above the
BEC critical point

Phenomenological analysis [3]

• Free energy density of isotropic spin-F Bose-Einstein condensate

fb =
�

2

2m∗∇Ψ†∇Ψ + α′(T − T 0
c )|Ψ|2 +

β0

2
|Ψ|4

+
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2
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σΨ∗
σ′Fσγ · Fσ′γ ′Ψγ ′Ψγ

• Free energy density of the NORMAL ferromagnetic phase

fm = c|∇M|2 + a′(T − Tf )
|M|2

2
+ b

|M|4
4

•Coupling between two phases

fc = −g|M|Ψ∗
σFσγΨγ

•The total Ginzburg-Landau free energy is ft = fb + fm + fc.
Minimizing ft with respect to Ψ∗ and M , one gets

Tc = T 0
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g

α′M = T 0
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g
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√
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b
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•At I → 0, both δTc = Tc − T0 and δTf = Tf − T0 tend to zero.
So we get

(δTc) = δTf

(
1 −

δTf

T ∗

)

with T ∗ = (g/α′)2a′/b

• Suppose δTf = CI when I << 1,

δTc = CI

(
1 − CI

T ∗

)

Thus the phase diagram is reproduced.

Spin waves [3]

•Considering fluctuations: M = (δMx, δMy,M + δMz)

Ψ† = (Ψ∗
1 + δψ∗

1, δψ
∗
0 , δψ

∗
−1)

•We get

– The density excitation

fI(δΨ∗
1, δΨ1) =

∑
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with the spectrum
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– The spin excitation
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which suggest the spin waves in normal and condensed compo-
nents are coupled, with the mixed spin-wave spectrum
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1. The spectrum has the same momentum-dependance as
in usual ferromagnets. 2. The spin-wave stiffness contains
two parts, implying “two fluids” feature of the system.

Discussions and outlooks
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Experimental background

Our results are relevant to current experiments on quantum degen-
erate atomic bosons.

• Atomic bosons with FM scattering: 87Rb [4]

V =
c0

2
n · n +

cs
2
S · S, cs < 0

•Magnetic dipolar Bose gases [5]

Umd =
µ0

4πr3
[m1 · m2 − 3(m1 · r̂)(m2 · r̂)]

The dipolar interaction causes ferromagnetism:
the dipolar ferromagnetism

Though the FM interaction is very week, we expect that
the FM transition or dipolar ferromagnetism can be ob-
served at a relatively high temperature.

Spinor Bose gases under experimental conditions

In experiments, the system is away from the thermodynamic limit.

•Total spin conservation

• Small particle number

Can the spin-rotational symmetry be broken spontaneously?

• If yes, [2,3,6]

– FM transition corresponding to domain formation

– Domains formed before BEC

– Fz=1 and -1 domains spatially separated

– Fz=0 domains much smaller

• If not, [6,7]

– Fz=1,0 and -1 particles miscible

– Fz=0 bosons condensed earlier than ±1 bosons

– Fz=0 component dominating over others

Outlooks

How does the ground state manifest in experiments:
the 3 components miscible or spatially separated?

To examine this, one can

• investigate spin dynamics [8]

• determine fractions of all the components
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