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Introduction and motivations

The realization of Bose-Einstein Condensate (BECs) as macroscopic quantum objects
combined with the realization of stable optical lattices, has made possible new and
interesting experiments to test the validity of simple theoretical quantum models.

Linear Landau-Zener tunneling is a well known effect and a complete mathematical
apparatus exists. An explicit formula for the tunneling probability was given by Landau and
Zener in 1932. It has been suggested that the presence of a self interacting ferm in the
evolution equation greatly modify the linear behaviour. We have studied these modifications
both theoretically and experimentailly. Most notably, we have found that the nonlinearity
leads to an asymmetry in the Landau-Zener tunneling between the two lowest energy bands.

Another consequence of the nonlinearity in a Bose condensate is the occurrence of
dynamical instabilities. We have studied these by accelerating the lattice in a controlled
way, thus scanning the entire Brillouin zone. By measuring the visibility of the interference
pattern after switching off the lattice, we could identify the region of the Brillouin zone in
which unstable behaviour occurs and identify a timescale on which the instabilities grow.

Instability of a BEC in an optical lattice

By integrating the profile in a direction perpendicular
to the optical lattice direction, we obtain a two-peaked
curve for which we can define a visibility (in analogy to
spectroscopy) reflecting the phase coherence of the
condensate:
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Here h,,, is the mean value of the two peaks (both
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quasimomentum averaged over 1/10 of their separation symmetrically
about the positions of the peaks); h, . is obtained by averaging the longitudinal profile
over 1/3 of the peak separation symmetrically about the midpoint between the peaks.
Above, results of a 1D simulation for different values of the nonlinear € parameter and
acceleration a=0.3 m s”. Solid, dashed and dotted line correspond to €=0.008 (the value of
our experiment), C=0.004 and C=0 respectively. The band edge is at quasimomentum 1.0.

Nonlinear Landau-Zener effect: 1D model

The motion of a Bose Einstein Condensate in an accelerated periodic potential can be modeled by the
nonlinear Schroedinger equation, namely Gross-Pitaevskii equation (GPE):
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where all quantities are dimensionless. The applied force is in the vector potential representation..
We can assume that in the neighborhood of the Brillouin zone edge (k=1/2) only the ground state and the
first excited state are populated. Then the wavefunction is well approximated by
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Substituting this ansatz in the GPE, linearizing the kinetic term, dropping a constant energy and comparing
the coefficients of the two plane waves, we are left with a simple two level model. The GPE equation for
the plane waves coefficients now reads:
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where y=at is the energy separation between the two levels.
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Nonlinear Landau-Zener effect: the experiment
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