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Abstract
The boson-Hubbard dimer describes a BEC in a double well potential using the two
mode approximation, which is relevant in the weak tunneling regime.
Analytical expressions for the energy eigenstates of this model are obtained by apply-
ing perturbation theory in the small tunneling amplitude limit. They are compared
with the corresponding numerical solutions and the limits of their validity are deter-
mined.

These results are used for calculating the time evolution of the number difference

of bosons between the two sites of the dimer. The analytical formulas concerning

the time dependence of this observable for different initial conditions (completely

localized states and coherent spin states) are compared with direct numerical solu-

tions of the quantum system, as well as with the corresponding Gross-Pitaevskii (i.e.

mean-field) dynamics.

The boson-Hubbard dimer Hamiltonian
A BEC in a double well potential with sufficiently distant local minima can be de-
scribed by the two-mode approximation [1]

H = −κ(b†1b2 + b†2b1) + U (b†1b
†
1b1b1 + b†2b

†
2b2b2)

b†i, bi: creation and annihilation operators of bosons at the ith well.

κ: tunneling amplitude between the two wells.

U : interaction energy between pairs of atoms that are confined in a particular well.

bi =
∫
φ?i (~r)Ψ̂(~r)d3r, i = 1, 2, κ = ∆E

2 , U = 2π
� 2a
ma

∫
|φ(~r)|4d3r

Dimensionless quantities: U unit of energy, k = κ
U , τ = (U/

�
)t

Dimensionless Hamiltonian: H = −k(b†1b2 + b†2b1) + (b†1b
†
1b1b1 + b†2b

†
2b2b2)

The solutions depend on k and the total number of bobons N = b†1b1 + b†2b2.

Angular momentum representation:
Jx = 1

2(b†1b2 + b†2b1), Jy = i
2(b†1b2 − b†2b1), Jz = 1

2(b†2b2 − b†1b1)

⇒ H = −2kJx+ 2J2
z (plus constant terms), J 2 = N

2

(
N
2 + 1

)
, Jz = N2−N1

2

Mean-field approximation
Mean-field approximation ⇒ Discrete Nonlinear Schrödinger (DNLS) dimer [2]:

i
dc1

dτ
= −kc2 + 2(N − 1)|c1|2c1 i

dc2

dτ
= −kc1 + 2(N − 1)|c2|2c2

DNLS energy spectrum [3]: Easym
extended = N

2 −Nk, Esym
extended = N

2 +Nk,

Elocalized = N2

2 + k2

2
N
N−1, for k < kcr = N − 1 (the localized solution bifurcates

from the symmetric extended solution Esym
extended, which becomes unstable below kcr).
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Fig.1: Energy spectrum of Hamiltonian H as a function of k, for N = 29 bosons.

Alternate dotted and dashed lines represent the N + 1 quantum eigenvalues. These

are degenerate by pairs in the small k limit. Continuous lines show the energies of

the DNLS stationary states [4].

Energy eigenvalues for small k
For k = 0 the N + 1 eigenvalues form degenerate pairs of levels with energies

E
(0)
m± = 2m2, m = 1

2 or 1, . . . , N2 − 1, N2
m is positive integer (for even N) or half-integer (for odd N).
For even N the ground state |0〉 is non-degenerate with eigenvalue Em=0 = 0.
The corresponding eigenvectors are |m±〉 = 1√

2
(|m〉 ± | −m〉),

where | ±m〉 are the eigenvectors of Jz: Jz| ±m〉 = ±m| ±m〉.
The state |m〉 corresponds to the occupation of one site of the dimer by N

2 + m

bosons and of the other site by the remaining N
2 −m bosons

As k increases from zero the degeneracy is gradually lifted, starting from the lower
levels (the smaller m).
For fixed value of k the splitting ∆Em± = |Em+ − Em−| decreases with m.
Up to second order in k the perturbative energy eigenvalues are given by [4]

E
(2)
m± = 2m2 + k2 J

2 +m2

4m2 − 1
, for m 6= 1,

1

2

E
(2)
1
2
± =

1

2
∓ k

√
J2 +

1

4
− k2

4
(J2 − 3

4
), for odd N

E
(2)
1± = 2 +

k2

6
(2J2 ± 3J2 + 2), for even N

The splittings ∆Em± of the levels Em± for m > 1 (which are still degenerate up
to second order) are of the order k2m (see below). The higher energy levels form
quasi-degenerate pairs for relatively small k
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Fig.2: The value ks at which the relative error of the perturbative energies, compared

with the corresponding numerical ones, reaches 1%, as a function of the number N

of bosons for a) the ground state and b) the most excited state. Circles and

squares represent numerical results. Continuous lines represent fits with the formula

ks = cNa. Ground state: a ≈ −1 (for even or odd N). Most excited state: a = 1

for N ≥ 34. The dashed line in b) plots k = N − 1 [4].

Energy eigenvectors for small k
For m 6= 0, 1, 1

2 the eigenvectors up to second order in k are [4]:

|hm±〉 = Am|m±〉+B+
m|(m+1)±〉+B−m|(m−1)±〉+C+

m|(m+2)±〉+C−m|(m−2)±〉

where

Am(k) = 1− k2

4
4J2m2+J2−4m4+3m2

(4m2−1)2 , B±m(k) = ±k
2

√
J2−m(m±1)

2m±1 ,

C±m(k) = k2

16

√
J2−m(m±1)

√
J2−(m±1)(m±2)

(m±1)(2m±1) .

Regarding the experessions of |h0〉, |h1±〉, and |h1
2
±〉 see Ref. [4].

Evolution of the relative number difference

〈Jz(τ )〉 =
∑

n= m±

∑

n′= m±
φ?nφn′ 〈hn|Jz|hn′〉 ei(En−En′)τ

where φn are the projections of the initial condition: |Ψ(0)〉 =
∑

n= m±
φn|hn〉

Comparison with mean-field dynamics: |c2|2 − |c1|2 −→ 〈Jz〉
N/2 = N2−N1

N

Completely localized initial state |Ψ(0)〉 = |N
2
〉
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Fig.3: Evolution of the relative boson number difference between the two sites of
the dimer at different time scales for k = 0.5 in a system with N = 10. Continuous
lines represent numerical results. The inset in b) and the open circles in a) and c)
correspond to analytical results [5].

〈J (2)
z (τ )〉 =

N

2
cos(ω0τ ) +

k2 N

4(N − 1)2
×

[
N

2
[cos(ω1τ )− cos(ω0τ )] + 2 cos(ωµτ ) cos(

ω1

2
τ )− cos(ω1τ )− cos(ω0τ )

]

where ωµ = 2(N − 1)− k2 N+1
N2−4N+3

EN/2−

EN/2−1−

EN/2+
EN/2−

EN/2−1+

EN/2−1−

ω0

ω1

ωµ

(2)

(2)

Fig.4: Schematic of the two upper quasi-degenerate pairs of energy levels. Up to

second order in k they are still degenerate with energies E
(2)
N
2
± and E

(2)

(N2 −1)±
, respec-

tively. This energy difference provides the short time-scale oscillating frequency ωµ.
At higher order in k these quasi-degenerate pairs split, providing the frequencies ω1

and ω0 that characterize the collapses-revivals and the coherent tunneling between
the two sites, respectively [6].

Following Ref. [7], the splitting of any quasi-degenerate pair is calculated as [5, 8]:

∆Em± = k2m
[
N
2 (N2 + 1)−m(m− 1)

] (N2 −m+2)·...·(N2 +m−1)

22m−2 [ (2m−1)! ]2
, for m > 1

⇒ ω0 = ∆EN
2
± = kN N

2N−2 (N−1)!

⇒ ω1 = ∆E(N2 −1)± = kN−2 (N−1)(N−2)

2N−4 (N−3)!

0 0.5 1
k (dimensionless tunneling amplitude κ/U)

−100

0

ln
(ω

0)

0 0.5 1
−100

0

ln
(ω

1)

N=5

N=10

N=20

N=5

N=10

N=20 a)

b)

Fig.5: Logarithms of the characteristic frequencies a) ω1, and b) ω0, as a function
of k for different numbers N of bosons. Continuous lines show analytical results,
while filled circles correspond to numerical calculations [5].

Mean-field dynamics corresponds to the evolution shown in Fig.3a [9]:
N2−N1
N = dn

(
(N − 1)τ ; 2k

N−1

)
−→ 1− 2k2

(N−1)2 sin2((N − 1)τ )

Coherent spin initial state

|Ψ(0)〉 = sin
N
2 (
θ

2
) cos

N
2 (
θ

2
)e−i

N
2 φ

m=n
2∑

m=−N2

√
N !

(N2 +m)! (N2 −m)!
tanm(

θ

2
) e−imφ|m〉

Zeroth-order terms (⇒ dominant frequency ωe):
even N : 〈J0

z (τ )〉 =

−N
2 cos(θ)+

(
sin(θ)

2

)N
P1 ·
[(

tan2(θ2)− 1
tan2(θ2)

)
(cos(ωeτ )− 1) + 2 sin(2φ) sin(ωeτ )

]

where ωe = E1+ − E1− = k2 N
2

(
N
2 + 1

)
, P1 = N !

(N2 +1)!(N2 −1)!

odd N : 〈J0
z (τ )〉 =

−N
2 cos(θ) + 1

2

(
sin(θ)

2

)N
P1

2
·
[(

tan(θ2)− 1

tan(θ2)

)
(cos(ωeτ )− 1)− 2 sin(φ) sin(ωeτ )

]

where ωe = E1/2−−E1/2+ = 2 k
√

N
2

(
N
2 + 1

)
+ 1

4, P1
2

= N !
(N2 +1

2)!(N2 −1
2)!

Coherent spin initial state (continued)

First-order terms: 〈J 1
z (τ )〉 = 〈J0

z (τ )〉 +

k
(

sin(θ)
2

)N [
C1 (cos(ωeτ )− 1) + C2 sin(ωeτ ) +

∑N
2 −1

n=0 or 1
2
Pn

N−2n
2(2n+1) An

]

An = tan2n+1(θ2) [cos(Fnτ + φ)− cos(φ)]− 1
tan2n+1(θ2)

[cos(Fnτ − φ)− cos(φ)]

even N :

C1 = P1 cos(φ)
[
N−2

6

(
tan3(θ2)− 1

tan3(θ2)

)
− N+2

2

(
tan(θ2)− 1

tan(θ2)

)]
,

C2 = P1

(
tan(θ2) + 1

tan(θ2)

) [
N−2

6 sin(3φ)− N+2
2 sin(φ)

]
,

Fn = En+1−En = 4n+ 2, n = 0, 1, . . . , N2 − 1 ⇒ Fn = 2, 6, 10, . . . , 2N − 2

odd N :

C1 = P1
2

N−1
8 cos(φ)

(
tan2(θ2)− 1

tan2(θ2)

)
,

C2 = P1
2

N−1
8 sin(2φ)

(
tan(θ2) + 1

tan(θ2)

)
,

Fn = En+1−En = 4n+ 2, n = 1
2,

3
2, . . . ,

N
2 − 1 ⇒ Fn = 4, 8, 12, . . . , 2N − 2
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Fig.6: Evolution of the relative atom number difference, 2〈Jz〉
N , between the two sites

of the double well for a coherent initial state with θ = π
4 and φ = π

2 , in a system with
k = 0.01, consisting of N =9, 10, 15, 16, 19, and 20 bosons, respectively. Black
lines represent numerical results, red lines zeroth-order analytical results and green
lines first-order analytical results [6].
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Fig.7: Fourier transform (red lines) of the numerical quantum evolution demonstrated
in cases a) Fig.6e (N = 19) and b) Fig.6f (N = 20). Insets show a magnification of
the spectra at the region of low frequencies, where ωe appears. The unique frequency
of the corresponding mean-field dynamics is also shown (dashed blue lines) [6].

Comparison with mean-field dynamics
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Fig.8: Evolution of the relative atom number difference, |c2|2 − |c1|2, in the mean-
field approximation (green lines) for a coherent initial state with θ = π

4 and φ = π
2 ,

in a system with k = 0.01, consisting of N =9, 10, 15, 16, 19, and 20 bosons, re-
spectively. In all cases the dynamics is nearly harmonic. The numerically calculated
quantum solution is shown for comparison (black lines) [6].

Conclusions
Perturbation theory in the small tunneling amplitude limit

• eigenvalues and eigenvectors up to second order

• splitting of the quasi-degenerate levels at higher order

Application in the evolution of a completely localized initial state

• small amplitude oscillations in short time-scales

• collapses and complete revivals in long time-scales

• coherent tunneling at even longer time-scales

• mean-field dynamics

Application in the evolution of a coherent initial state

• dominant frequency

• manifestation of the whole energy spectrum

• comparison with mean-field dynamics
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