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Abstract

A Bose-Einstein condensate trapped in a two-dimensional (2D) optical lattice ex-
hibits an abrupt transition manifested by the macroscopic wavefunction changing
character from spatially localized to extended. This transition takes place as the
interwell potential barrier is adiabatically decreased below a critical value and is irre-
versible since increasing the interwell barrier back to its initial value does not restore
localization.

This is in sharp contrast with the one-dimensional case where a similar delocalization

is continuous and reversible. The different behavior reflects the existence of a critical

point for the appearance of localized stationary states in two dimensions.

The boson-Hubbard Hamiltonian

Many-body Hamiltonian of a BEC in an optical lattice (ignoring the trapping poten-
tial)

H =

∫
d3r

[
Ψ̂†(~r)(−

� 2

2m
∇2)Ψ̂(~r) + VoptΨ̂

†(~r)Ψ̂(~r) +
2π

� 2a

m
Ψ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r)

]

Expanding the field operators in the basis of localized on individual lattice sites single
boson states, φi(~r − ~ri) [1],

Ψ̂(~r) =
∑

i

biφi(~r − ~ri)

we derive the boson-Hubbard Hamiltonian (a single band tight-binding approximation
taking into account only the lowest vibrational states)

H = −k
∑

〈i,j〉
b†ibj + U

∑

i

b†ib
†
ibibi

b†i, bi: creation and annihilation operators of bosons at the ith well.

k: tunneling amplitude between adjacent wells.

U = 2π � 2a
m

∫
|φ(~r)|4d3r: interaction energy between pairs of atoms confined in a par-

ticular well

Mean-field approximation

A mean-field approximation leads to the discrete nonlinear Schrödinger (DNLS) equa-
tion for the macroscopic wavefunction Ψn of the condensate at trap n [2, 3]

i
� dΨn

dt
= −k

∑

δ

Ψδ + 2UN |Ψn|2Ψn,

where we have used that N − 1 ≈ N .

The sum over δ is over the nearest neighbors of lattice site n. In a 2D lattice for
example, denoting a particular potential well n by the integer pair (nx, ny), the first
term in the right hand side is

−k(Ψnx+1,ny + Ψnx−1,ny + Ψnx,ny+1 + Ψnx,ny−1)

Stationary solutions in 1D and 2D

Stationary solutions of DNLS:

Ψn = ψne
−(i/ � )Ωt

where ψn is time-independent.
There is a band of extended (Bloch) stationary states and a branch of single-peaked
localized states [4]. A bifurcation exists in 2D (and in 3D as well) in the branch
of the localized states, leading to its disappearance below a critical value of the
parameter 2UN

k [4].
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Fig.1: Frequency Ω (in units of k/
�

) of the localized stationary solutions of DNLS

versus the dimensionless parameter 2UN
k

in a 1D and 2D lattice. Red lines represent

the edges of the energies of the extended solutions, which form a band centered

symmetrically around zero.

BEC can demonstrate the bifurcation point in
2D

Apart from Bose-Einstein condensates, DNLS has also found applications

• in interacting electron-lattice models in solid state physics [4, 5]. Localized solu-
tions of DNLS correspond to polarons.

• in arrays of coupled nonlinear optical waveguides [6].

• for local intramolecular stretching vibrations in symmetric polyatomic molecules
[7]

• as a generic model for studying nonlinear effects (breathers, for example) [8]

BECs, due to their unique and precise manipulation, have been proved suitable sys-
tems for demonstrating various well-known properties of solid state physics [9–12].
Here, the current experimental abilities (see Ref. [13], for example) can be used to
demonstrate the existence of the bifurcation point in the localized states of DNLS
in 2D, through a striking transition as follows:
A decrease of the intensity of the laser generating the optical lattice ⇒ de-
creases the interwell barriers ⇒ increases the tunneling amplitude k ⇒ de-
creases the parameter 2UN

k ⇒ an irreversible transition from the localized
branch to the extended states can be induced.

Parameter values

Estimate of the parameters from the experiment of Ref. [13]

N = 104 atoms of 87Rb

S-wave scattering length: a = 5.8 nm

The optical lattice is generated by a laser with λ = 840 nm
Lattice constant: λ

2 = 0.42 µm
Linear extent of the transverse confinement → 0.7 µm
⇒ Effective volume of the local mode φ(~r) → 0.2 µm3

The interaction energy U is of the order of 10−4 neV

Recoil energy ER = 2π2 � 2

mλ ∼ 0.01 neV

Variation of the height of the barriers: from ∼ ER up to ∼ 50ER

(this strongly affects k, but only slightly U [1])
⇒ the ratio 2UN

k varies from ∼ 1 up to ∼ 105

⇒ k varies from ∼ 10−5 neV to ∼ 1 neV

Irreversible transition in 2D

Variation of the interwell barriers of the optical lattice by
crossing the bifurcation point
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Fig.2: Demonstration of abrupt delocalizing transition in 2D as the
tunneling amplitude k is linearly changed from 0.17 neV to 0.35 neV
and back, during time interval 0.35 ms (left panel). The evolution
of the condensate is illustrated by the cross-section Ψnx=15,ny of the
wavefunction in the center panel where red color indicates high am-
plitude (∼ 1) and blue color indicates low amplitude (� 1), and by

its linear extent Wl = Z1/D, as represented through the participa-

tion number, Z = 1/
∑
n |Ψn|4, in the right panel. The remaining

parameters are U = 10−4 neV for N = 104 atoms in a 30 × 30
optical lattice [14].

Variation of the interwell barriers without crossing the
bifurcation point
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Fig.3: Absence of delocalizing transition in 2D as the tunneling am-
plitude k is linearly changed from 0.17 neV to 0.33 neV and back,
during the time interval 0.35 ms (left panel), without the ratio 2UN

k
crossing the critical point. The center and right panels are analogous
to Fig.2, as are the remaining parameters [14].

Absence of irreversible transition in 1D

Large variation of the interwell barriers in 1D
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Fig.4: In 1D the delocalizing transition is replaced by a continuous
delocalization and re-localization as the tunneling amplitude k is lin-
early changed from 0.2 neV to 2.8 neV and back during time interval
0.35 ms (left panel). The center (right) panel depicts the evolution
of the 1D wavefunction, (linear extent Wl). U and N are as in Fig.
2 and the 1D lattice consists of 30 sites [14].

The time scale of the transition

Relevance of the time scale of system’s intrinsic dynamics
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Fig.5: The evolution of the linear extent Wl of a 2D condensate as
the coupling k is swept from 0.17 neV to 0.35 neV and back (sweep-
ing profile shown by the thick solid line, referring to the right axis) for
three different sweeping times T : 3.5 ms (dotted line), 0.35 ms (thin
solid line), and 17.5 µs (dashed line). The remaining parameters are
as in Fig. 2 [14].

Conclusions

• Demonstration of an abrupt, irreversible, delocalizing transition in a 2D optical
lattice, as the height of the periodic potential varies in a closed loop.

• The disappearance of localized stationary modes below a bifurcation point drives
the condensate wavefunction to the branch of extended Bloch states.

• Similar phenomena should appear in 3D optical lattices.

• Such a delocalizing transition is absent in 1D since the mean-field nonlinearity
ensures the existence of a continuous branch of localized solutions.

• The transition is sensitive to the time scale of the variation of the interwell barriers.
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