Nonlinear dynamics and solitons in optical lattices

Yuri Kivshar

Nonlinear Physics Centre Australian National University Canberra, Australia

Collaborators: "BEC group"

Elena Ostrovskaya, a key researcher Tristram Alexander, a postdoc Pearl Louis, a PhD student Beata Dąbrowska, a PhD student

2004

(Only "BEC people" of the Center)

1993

Nonlinear Physics Center

Our evolution: 1993-2004

Outline

- Solitons: optics vs. BEC
- Bloch waves and band-gap spectrum
- Gap solitons in 1D lattices
- Mobility of 1D gap solitons
- 2D optical lattices and 2D gap solitons
- 2D discrete vortices
- Experimental observations in optics
- 3D discrete vortices

\mathcal{A}

Solitons

Optics: Self-focusing and solitons

experiment

Input

Low Power

Soliton Power

nonlinear syup He AUSTRALIAN RATIONAL UNIVERSITY

Matter waves in the mean-field picture

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + V_{\text{Trap}}(\mathbf{r})\psi + g\psi|\psi|^2$$

Striking similarity with coherent light waves"Kerr-type" nonlinearity due to atom-atom interactions

Main difference: atoms have mass!

Usually a trapping potential is included

Nonlinear matter waves

Nonlinearity grows with the number of atoms N (nonlinearity is always there)
 Repulsive: dark solitons and vortices
 Attractive: bright matter-wave solitons
 Can be tuned via Feshbach resonances

 "Focusing": <u>attractive</u> interactions (g<0)
 "Defocusing" : <u>repulsive</u> interactions (g>0)

 Optical lattices create tunable Bragg gratings

Solitons in nonlinear atom optics

Macroscopic wave function: the mean field theory The Gross-Pitaevsky equation vs. the NLS equation

•Vortices and vortex solitons (1999)
•Dark solitons (1999-2000)
•Bright solitons (2002)
•Matter-wave gap solitons (2004)

Solitons in periodic structures

Atomic band-gap structures

- **BEC in optical lattices -**
- nonlinear band-gap structures for matter waves
- Unprecedented control over parameters
- Nonlinearity that can be turned off or reversed
- Degree of discreteness can be varied
- Dimensionality can be changed
- Effective dynamical tunability

Band-gap spectrum

$$\psi(x,t) = \psi(x) \exp(-i\mu t)$$
$$\frac{1}{2} \frac{d^2 \psi}{dx^2} - \left\{ V_0 \sin^2(k_L x) - \mu \right\} \psi = 0$$

Gap solitons

Dispersion relation in a free space:

$$E(p) = \frac{p^2}{2m}$$

Dispersion for BEC in a lattice is defined by

 $E(k) \equiv \mu(k)$

 $D = \frac{\partial^2 \mu}{\partial k^2} > 0 \text{ at the band's centre} < 0 \text{ at the band's edge}$ (negative "mass")

Gap solitons - balance between "anomalous" dispersion and positive interaction (repulsion) at the upper band edge

Gap solitons in 1D structures

Soliton mobility

e^{ikx}

$\mu = 7.7$ $k_{PN} = 1.2 \times 10^{-2}$

(free motion)

Peierls-Nabarro potential

Soliton fusion

discrete NLS $\mu \ge 7.5$ strongly inelastic scattering

 $170 \rightarrow 270$ atoms

Generation of gap solitons

Top half

1. BEC loaded at *k*=0 by slowly ramping up the lattice.

2. Lattice slowly accelerated to $v = v_{recoil}$. Adiabatically moves BEC to the gap edge.

3. Wavepacket evolved at the gap-edge in a lattice moving with velocity $v = v_{recoil}$.

Bottom half

Generates the correct internal structure using interference rather than acceleration.

Experiment: Gap Solitons in BEC

Oberthaler's group, 2004

Spatial gap solitons in optics

Discrete solitons: Single beam excitation

Gap solitons: two beams

VOLUME 93, NUMBER 8

PHYSICAL REVIEW LETTERS

week ending 20 AUGUST 2004

Controlled Generation and Steering of Spatial Gap Solitons

Dragomir Neshev, Andrey A. Sukhorukov, Brendan Hanna, Wieslaw Krolikowski, and Yuri S. Kivshar Nonlinear Physics Centre and Laser Physics Centre, Centre for Ultra-high bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia

2D optical lattices

Photonic band-gap structures

Optical lattices in higher dimensions

Munich BEC group

2D: phase coherenceM. Greiner et al.PRL 87, 160405 (2001)

3D: coherence break-upM. Greiner et al.Nature 415, 39 (2002)

BEC in a 2D optical lattice

$$i\frac{\partial\psi}{\partial t} + \nabla\psi - V_{\text{Latt}}(\mathbf{r})\psi - \sigma\psi|\psi|^2 = 0$$

$$V_{\text{Latt}} = V_0 \left[\sin^2(k_L x) + \sin^2(k_L y) + 2\mathbf{e}_1 \cdot \mathbf{e}_2 \cos\theta \sin(k_L x) \sin(k_L y) \right]$$

"Square" lattice and Repulsive nonlinearity $\sigma > 0$

Stationary states of noninteracting condensate - Bloch waves:

$$\psi(\mathbf{r},t) = \varphi(\mathbf{r}) \exp(-i\mu t); \quad \varphi(\mathbf{r}) = u_k(\mathbf{r}) \exp(i\mathbf{kr})$$

 $\mathbf{k} \in \mathbf{BZ}; \qquad u_k(\mathbf{r}) = u_k(\mathbf{r} + \mathbf{d})$

2D band-gap spectrum

$$\left|i\frac{\partial\psi}{\partial t} + \nabla\psi - V_{\rm L}(\mathbf{r})\psi - \psi|\psi|^2 = 0$$

$$V_{\text{Latt}} = V_0 \left[\sin^2(x) + \sin^2(y) \right]$$

Gap solitons in 2D lattices

Ostrovskaya et al, PRL <u>90</u>, 160407 (2003)

2D optical lattices and discrete vortices

Imprinting a phase: BEC vortex in-band

Bloch vortex at k=0: $\psi(r,\theta) \sim A\exp(im\theta)\exp(-a^2r^2)u_{l,\mathbf{k}_{\Gamma}}(r,\theta)$ Bloch vortex at k=k_M: $\psi(r,\theta) \sim A\exp(im\theta)\exp(-a^2r^2)u_{l,\mathbf{k}_{M}}(r,\theta)$

Stationary in-gap states: gap vortices

two symmetry types:(a,c) off-site vortex(b) on-site vortex

and different widths:(d) wide off-site vortex

Off-site vortices

 Off-site vortices of different rad
 Almost degenerate in atom number

Discrete vortices in nonlinear optics

Why use a lattice?

Periodic potential leads to vortex stability

Stable on a lattice

Discrete optical vortex: observation

Optically induced 2D grating in a photorefractive crystal

FIG. 5 (color online). Phase structure measurements. (a) Discrete vortex soliton for a lattice period of 20 μ m. (b)–(d) Interferograms of the vortex soliton with a weak broad coherent beam, whose relative phase is changed in steps of $\pi/2$.

Neshev et al & Fleischer et al, PRL 92 (2004)

Without a lattice vortex rings decay!

Theory + experiment Tikhonenko et al, 1995

Energy balance condition

We examine the existence properties of discrete vortices by solving the energy balance conditions for coupled modes:

Energy into and out of a lobe must be equal

Vortex lattice solitons

Different types of the vortex symmetries

Two experimental observations

VOLUME 92, NUMBER 12

PHYSICAL REVIEW LETTERS

week ending 26 MARCH 2004

Observation of Discrete Vortex Solitons in Optically Induced Photonic Lattices

Dragomir N. Neshev, Tristram J. Alexander, Elena A. Ostrovskaya, and Yuri S. Kivshar

Nonlinear Physics Group, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia

Hector Martin, Igor Makasyuk, and Zhigang Chen

Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA TEDA College, Nankai University, Tianjin, China (Received 4 September 2003; published 25 March 2004)

We report on the first experimental observation of *discrete vortex solitons* in two-dimensional optically induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.

VOLUME 92, NUMBER 12

PHYSICAL REVIEW LETTERS

week ending 26 MARCH 2004

Observation of Vortex-Ring "Discrete" Solitons in 2D Photonic Lattices

Jason W. Fleischer,^{1,2} Guy Bartal,¹ Oren Cohen,¹ Ofer Manela,¹ Mordechai Segev,¹ Jared Hudock,² and Demetrios N. Christodoulides²

¹Physics Department, Technion–Israel Institute of Technology, Haifa 32000, Israel ²School of Optics/CREOL, University of Central Florida, Orlando, Florida 32816-2700, USA (Received 17 September 2003; published 25 March 2004)

We present the experimental observation of both on-site and off-site vortex-ring solitons of unity topological charge in a nonlinear photonic lattice, along with a theoretical study of their propagation dynamics and stability.

Charge flipping of on-site vortex

A small, but finite, perturbation leads to a charge reversal and a new effect:

periodic flipping of the vortex charge

www.rsphysse.anu.edu.au/nonlinear

Alexander, Sukhorukov, & Kivshar, PRL 93, 063901 (2004)

Asymmetric vortices Nonlinearity allows for the symmetry breaking

- Symmetric rectangular vortex does not exist
- Diagonal coupling weaker than nearest-neighbor coupling

Alexander, Sukhorukov, & Kivshar, PRL <u>93</u> 063901 (2004) www.rsphysse.anu.edu.au/nonlinear

How to generate a gap vortex?

Gap-state preparation requirements:

- Negative effective diffraction regime
- Adiabatic drive to the Brillouin zone's edge

$$t >> 1/\Delta \mu_{gap}$$

Phase ramp imprint

Simulation procedure:

- Start with a broad BEC wavepacket at the correct band edge (with a nontrivial Bloch-wave phase)
- Imprint a charge one vortex phase
- Let evolve in time

Generation dynamics

Discrete diffraction

Possible outcomes

Necessary: atom number above vortex state threshold
 Sufficient: peak density above threshold

3D discrete vortices

3D discrete vortices

Dynamics of 3D discrete vortices

stackdyn

nonlinear physics group HE AUSTRALIAN NATIONAL UNIVERSI

Conclusions

•Nonlinear optics provides a solid background for the physics of nonlinear matter waves and solitons

Much to learn from the field of spatial optical solitons
Novel features: a strong trap; 2D vs. 3D; strong repulsion

Last 2-3 years show a strong influence of both the fields on each other

Novel directions for matter waves in lattices
Attractive condensate in a lattice (1D vs 2D & 3D)
>In-gap nonlinear effects (e.g. gap vortex)
>Atomic bandgap engineering - BEC in superlattices
>Spinor, multi-component, and atom-molecular BEC

