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rity atoms. Potential applications to quantum infor-
mation processing are discussed.

Effective interaction of impurity
atoms in a BEC

e Impurity atoms in sufficiently deep traps = Only ground
state ¢ of traps occupied.

e Interaction with condensate is given by
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with state dependent coupling constants xy = 0, k1 = K.

e Dynamics of the condensate is calculated by standard Bo-
goliubov approach [1]

P(r,t) = o(r +Z uj(r b]—u )bT

with ¢y being the condensate wave function.

e Reduced statistical operator matrix elements g,5,5 =
{af,t| 0|7é,t) for the two impurity atoms are calculated in
the usual Born approximation
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e Correlation functions are given by
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where the E;’s are the Bogoliubov energies and
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e Egs. (1)-(3) correspond to effective coarse grained Hamil-

tonian for (symmetric located) impurity atoms in interaction
picture. It reads
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condensed atomgsz tﬁé”cﬂr)dth of the impurity traps and Ar
the distance between the impurities.
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Here, K =

gNo2mpL2/R2V.
e Influence of the ratio Ly,q/L., where Ly,g = Ly = Ly :
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= 1D geometry preferred.

Ideal, 1D trapped condensate

Energy shift
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where z = z%/(z% + z(z)), z = zl/,/z% +z(2], zp the width
of the condensate trap, zy the width of the impurity traps.
Furthermore kp = n/(27rai) with the radial confinement
ai = h/mpw, . H, are Hermite polynomials.
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In this figure 2; = —

 Influence of the width of the impurity traps is very weak.
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Abstract Homogeneous condensate Interacting, 1D trapped
condensate
The interaction of two spatially separated impu- ) ) .
. . e Assume a condensate in a box with periodic boundary con-
rity atoms through phonon exchange in a Bose- ditions. imouriti i
, impurities located on the z-axis. . - )
Einstein condensate is studied within a Bogoliubov £ hit e Condensate dynamics is solved within the Thomas-Fermi
. . ner sni i i
approach. The impurity atoms are held by deep ¢ Energy approximation [1].
and narrow trap potentia|s and experience level 2 212 e The solutions of the Bogoliubov-de Gennes equation are
. . . ! No ’Ek 2k iven by [2]
shifts which consist of a mean-field part and vac- = ZHVZZ B cos (k- Arjexp | ——o— 9 Y
uum contributions from the Bogoliubov-phonons. In 4
addition there is a conditional energy shift resulting o) = 2j+1 [2N (1 _ i)] Ip] <L>
from the exchange of phonons between the impu- with By = y/e” e = 5, No the number of 2R1r Fip Brp

with f]i =uj ;.

e The spatial dependence of the energy shift disappears and
one gets

e Conditions
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with Rpp the Thomas-Fermi radius, r the distance of
the impurities from the edge of the condensate, and ¢ =
hwp/2p-

e Furthermore, one is restricted to (coarse graining approxi-

mation)
3NgK?
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o For a tight transverse confinement w | = 27 x 10*Hz, a scat-
tering length a; = 200nm between impurities and conden-
sate and a = 5nm within the condensate one finds a condi-
tional frequency shift of 2r x 10°Hz.

Implementation of a quantum
phase gate

e A quantum phase gate can be implemented as follows
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e |r) and |0) are the logical states.
e Gate time has to be long compared to the inverse condi-
tional frequency shift A1

e Because of (4) the major restriction is the trap frequency in
weak (longitudinal) direction wpg.
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