
Rydberg Atoms in 
Magnetic Quadrupole Traps

Electronically excited atoms in a high 
gradient magnetic field

• for highly excited states, e.g. Rydberg states, in strongly
inhomogeneous fields the adiabatic approximation does not hold

• atom size is comparable to the length scale of the field variation
both nucleus and electrons are separately ‘visible‘ to the field

• electrons and nucleus couple through their charge and magnetic
moment to the field

• spin-orbit and nuclear spin-total spin coupling can be neglected (VFS~ r-3)
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Alkali atoms

• alkali atoms are used in almost all experimental applications
• atoms in highly excited states (Rydberg states) can in good

approximation be treated as hydrogenic systems

The general Hamiltonian
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The Hamiltonian
• the two-body problem cannot be separated due to the presence of the external magnetic field

Application of the following approximations:
• coupling of the nuclear spin to the field is neglected
• motion of electron and nucleus is assumed to be decoupled (mass ratio:             )
• nucleus position is fixed in the center of the trap (coordinate origin)

Electronic Hamiltonian in spherical coordinates (r,θ,φ)
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Energy spectrum

Symmetries

In both fields the interplay of 
the symmetries leads to a 

two-fold degeneracy of any
energy level.
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Vectorial Plot of the Magnetic Field
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Vectorial Plot of the Magnetic Field

• rotation
invariance around
z-axis

• translation
invariance along
z-axis

Magnetic Guide
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non-trivial coupling of the electronic
spin to spatial degrees of freedom

no separation of spin space and real 
space dynamics possible

coordinate exchange (x↔y)Ixy

σx→−σy σy→−σx σz→ -σzS1

Pauli spin matricesσi

conventional time reversalT

σx→−σy σy→σx σz→σzS2

xi-parityPi

total angular momentum
(z-component)

Jz
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• dynamics takes place in 
separated 2-dimensional
subspaces characterized by
the Jz-quantum number mJ

• non-Abelian symmetry group
• no continuous symmetry

system requires full
3-dimensional  treatment

commuting set of operators

four separate PyPzIxyS2–sub spaces
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Quadrupole Field Magnetic Guide1
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• overlap of adjacent n-manifolds scales as

n-manifold
mixing

Electric dipole transitions in the quadrupole field
Selection rules Transition amplitudes (σ- -transitions from the ground state)

• lines in the quadrupole
field are systematically
shifted towards higher
wavelengths

• due to additional selection
rules less sub-lines appear
in the homogeneous
field

0π-transitions

1σ+-transitions

-1σ--transitions

∆mJ=mJ´-mJ

Electric dipole transitions in the magnetic guide
Selection rules Transition amplitudes (σ+ -transitions from the ground state)

• much larger number of sub-
lines than in the
homogeneous and quadrupole
field

• zoomed view reveals a
dominant sub-line pair

PyPzIxyS2–sub spaces

Magnetic field induced electric dipole moment

• operator of the electric dipole moment:
• due to the conservation of parity the expectation value
of      vanishes
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Field free atom (b = 0)

Atom in quadrupole field

• the expectation value vanishes only for the x- and y-
component of the dipole operator

• the charge distribution of the electronic states is in
general not symmetric with respect to the x-y-plane

in general the z-component of      is not zeroD

• the states exhibit a non-vanishing state
dependent electric dipole moment which is induced by
the external magnetic quadrupole field
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Spin-orientation in the
magnetic guide
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• the inhomogeneous magnetic field prevents
the factorization of spin and real space dynamics

• we investigate the expectation value of the
cosine of the angle γ between the spin and the
magnetic field
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quantum numbers:

‚Ellipsoidal States‘
in the quadrupole field

• exhibit large orbital angular momenta
• possess a unique angular momentum decomposition
• spatially compactness together with small radial
uncertainty ∆r

wavefunction is well localized outside
the atomic core

non-symmetric
charge distribution
of an electronic state
belonging to
the n=22 multiplet
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Angular momentum
decomposition

Probability density
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