

Spectral Properties and Lifetimes of Neutral Spin-1/2-Fermions in a Magnetic Guide

I. Lesanovsky¹ and P. Schmelcher^{1,2}

¹Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany ²Physikalisch-Chemisches Institut, INF 229, 69120 Heidelberg, Germany *E-mail: igor.lesanovsky@physi.uni-heidelberg.de*

The System

Taylor expansion of the magnetic guide around field minimum

$$\vec{B} \approx \frac{B_B}{\rho_0} \begin{pmatrix} x \\ -y \\ B_I \end{pmatrix} + \frac{B_B}{\sqrt{2}\rho_0^2} \begin{pmatrix} -x^2 + 2xy + y^2 \\ x^2 + 2xy - y^2 \\ B_I \end{pmatrix} + \frac{B_B}{\rho_0^3} \begin{pmatrix} y(y^2 - 3x^2) \\ -x(x^2 - 3y^2) \\ B_I \end{pmatrix}$$

 $\bullet\,\rho_0\,...$ distance from the wire to the field minimum • consider only the leading (quadrupole) term

Vectorial Plots of the quadrupole term (B₁=0)

• translation invariance along the z-axis

x_i-parity

Pauli spin matrices

The Hamiltonian

· a neutral particle couples only through its magnetic moment to the magentic field

$$\rightarrow V_{mag} = -\vec{\mu}\vec{B} = \frac{g}{2}\vec{S}\vec{B}$$

• due to its translational invariance along the z-axis a two-dimensional description of the system is sufficient (plain waves in z-direction)

$$H = \frac{1}{2M} \left[p_x^2 + p_y^2 + \frac{bg}{2} \left(x\sigma_x - y\sigma_y \right) + \frac{B_I}{2} \sigma_z \right]$$

Scaling Transformation

$$\overline{x}_{i} = \left(\frac{bgM}{2}\right)^{\frac{1}{3}} \qquad \overline{p}_{i} = \left(\frac{bgM}{2}\right)^{\frac{1}{3}} \qquad \gamma = B\left(\frac{gM}{2b^{2}}\right)^{\frac{1}{3}} \quad \text{scaled Ioffe} \\ \frac{\text{scaled}}{\text{Hamiltonian}} \qquad \overline{H} = \frac{1}{2}\left[\overline{p}_{x}^{2} + \overline{p}_{y}^{2} + \overline{x}\sigma_{x} - \overline{y}\sigma_{y} + \gamma\sigma_{z}\right]$$

• there are no bound solutions of the Hamiltonian \overline{H}

· energies and decay widths of the resonance states are obtained by employing the complex scaling method together with the linear variational principle

Resonance Energies and Decay Widths

Quasi-Bound States vs. Adiabatic Approximation

Unitary transformation of the Hamiltonian

0.06

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{1+\alpha} & \sqrt{1-\alpha} \\ \sqrt{1-\alpha} & -\sqrt{1+\alpha} \end{pmatrix} \qquad \alpha = \frac{\gamma}{\sqrt{\gamma^2 + \rho^2}}$$

· diagonalizes the spin-field interaction term · additional off-diagonal terms occur which involve

- negative powers of o

Hamiltonian in the adiabatic approximation

 $l \in \mathbb{N}$

• projection of the spin onto the local field direction is assumed to be conserved \rightarrow scalar potential

particles in a magnetic guide **Magnetic Guide**

• we investigate the resonant motion of neutral spin-1/2-

- · magentic field of a straight current carrying wire superimposed by an external homogeneous bias field • in order to avoid a line of zero field parallel to the wire
- a so-called loffe field can be applied

Symmetries

- · the system exhibits a wealth of symmetries, both unitary and antiunitary
- · symmetry properties change depending on whether there is an external Ioffe field applied or not
- $\Lambda_z = L_z S_z$ is conserved in both cases: quantum number m
- Σ_z is also conserved in both cases: quantum number κ

Symmetries for $\gamma = 0$

$\Sigma_x = \sigma_x P_y$	$\Sigma_y = P_x \sigma_y$	$\Sigma_z = P_x P_y \sigma_z$	
$I_{xy}S_1^*$	$P_y I_{xy} S_2$	$P_x P_y I_{xy} S_1$	$P_x I_{xy} S_2^*$
$T\sigma_x$	$TP_xP_y\sigma_y$	$TP_x\sigma_z$	TP_y
$TP_yI_{xy}S_1^*$	$TI_{xy}S_2$	$TP_x I_{xy} S_1$	$TP_xP_yI_{xy}S_2^*$

Symmetries for $\gamma \neq 0$

Λ_{z} -Expectation Value and Resonance Positions

Dependence of the resonance energy on the Λ_{z} -eigenvalue

· ground state energy in a given msubspace grows linearly with increasing modulus of m • pyramid-like distribution

Т conventional time reversal I_{xy} coordinate exchange $(x \leftrightarrow y)$ S $\sigma_x \rightarrow -\sigma_v \quad \sigma_v \rightarrow -\sigma_x \quad \sigma_z \rightarrow -\sigma_z$ S_2 $\sigma_x \rightarrow -\sigma_y \quad \sigma_y \rightarrow \sigma_x \quad \sigma_z \rightarrow \sigma_z$

Pi

 σ_i

\rightarrow symmetry structure gives rise to a two-fold degeneracy of any energy level degenerate pair of states

 $|E,m,\kappa\rangle$ and $\Sigma_x|E,m,\kappa\rangle = |E,-m,-\kappa\rangle$ \bullet degenerate states posses opposite $\kappa\,$ and m

quantum numbers

· symmetry group simplifies due to the presence of the Ioffe field \rightarrow no symmetry related degeneracies occur

energetical splitting

en $|E, m, \kappa|$

Dependence of the decay width on the Λ_{z} -eigenvalue

- 10 20 · exponentially decreasing decay width (increasing lifetime) with increasing modulus of the Λ_z eigenvalue • global decrease of the decay widths if Ioffe field is present
- → coupling between the bound and unbound solution takes place near the center of the guide \rightarrow for sufficient high angular momenta the wavefunction is localized far away from the center of the guide
- \rightarrow transitions to unbound states are inhibited
- \rightarrow states are guasi-bound

Hamiltonian describing quasibound states

 $\sqrt{\gamma^2 + \rho^2} + \frac{m\gamma}{\rho^2\sqrt{\gamma^2 + \mu^2}}$

- · extremely well agreement between quasi-bound and exact resonance energies
- with increasing strength of the Ioffe field the adiabatic approximation also begins to work well