Investigation of the dynamics of a Bose-Einstein
condensate in a moving optical potential

LENS European Laboratory for Nonlinear Spectroscopy
and Dipartimento di Fisica - Universita di Firenze - ltaly




Linear Regime - low atomic density (expanded BEC)
+ stable dynamics of the system 15 well descrbed in terms of Bloch theory
+ Investigation of Bloch oscillations, Wannier-Stark ladders, and Landau-Zener tunneling

NonLinear Regime - high atomic density (trapped BEC)

A dilute atomic Bose-Einstein condensate in an external potential is descrbed by the Gross-Pitasvskil equation
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+ the Bloch waves are not stable solutions of the Gross Pitaevski equation (GPE)
- dynamical & energetic instabilities

EXPERIMENT: TIME EVOLUTION OF A HARMONICALLY TRAPPED
CONDENSATE LOADED INTO AMOVING 1D OPTICAL LATTICE



Instabilities of a trapped BEC in a moving optical lattice

A repulsive condensate in a periodic potential may suffer both:

ENERGETIC INSTABILITY DYNAMICAL INSTABILITY
When the system flows with velocity w=c, then the the frequency of some modes inthe excitation
systern can lower its energy by emitting phonons spectrum has & nonzero imaginary part. The
(Landau criterion) (in the presence of dissipative occupation of these modes grows exponentially in
Processes) time and rapidly drives the system away from the
steady state.
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Experimental probe of instability

e adiabatically switch on a moving optical lattice in order to load the trapped BEC in & state with well defined

guasimomentum g and band index n.
The moving optical Istice is produced with the interderence of two counterpropagating off-resonant laser beams

with different frequencies.
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Regardless of which is the mechanism responsible for the onset of instability, losses of atoms in

number of atoms

150k

100K

sk |-

Ck

the condensate ground state are expe cted.

E
Y
II'-L
u‘\
3 L)
\\ -
.
s
Tee
o — L]
. ———— S
i i i i I ] ] ]
e} - 10 15 20 25 30

Exponential fit of number of
atoms ws. time



Energetic instability

GPE

[ ] energstic instability
dynamical & energetic instability
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Investigate in low
quasimomentum
regime

Stability - diagram for & BEC in an 10D
10 optical lathice: full 30 calculations by M.
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The experiment is performed in the presence
of a dissipative process:

THERMAL COMPONENT




Energetic instability

pure BEC
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e attribute this behaviour to the onset of energetic instability (in @ inhomogeneous system), occurring in the
presence of dissipative processes, asthose provided by the thermal fraction.



Energetic instability for an inhomogeneous sample

We expect energetic instability for, ¥ > o JP'_I

Zinge the BEC is not homogeneous, the threshald for the activation of energetic instability is not sharp. A
fraction of the BEC (dependent on ) has a local sound velocity higher than the welocity of the latlice
{Landau criterion)
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knowing the BEC density distribution one can caleulate the fraction of stoms having a sound velocity grester
than the center of mass velocity
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where:  (x)  Heaviside function 4y threshold value for homogeneous cylindrical condensate

U

expected number of atoms

initial number of atoms fraction of atoms having c>q
{stable fraction)

atoms remaining in the condensate
once it is entirely unstable



N(g.0)= (N, b)) S, (@) +b(®)
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Removing energetic instability
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Without the RF-shield, the
transition to the Dl regime
I5 masked by the effect of

energetic instability,

In the presense of the RF
shield, the fransition is
clearly wisible.



Investigating dynamical Instability
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« A threshold  walue  of
quasimomentum at which the
atom loss rate dramatically
INCreases.

+ Deeply in the dynamically
unstable regime we observe
the appearance of some
complex structures in the
gxpanded BEC density profile



Dynamical instability in the higher bands
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Conclusions

@

EXFERIMENT: TIME EVOLUTION OF A HARMONGCALLY TRAFFED
COMNDENSATE LOADED IN A MOWIMNG 1D OPTICAL LATTICE

v Evidence of energetic instability in the presence of a thermal component

v Evidence of dynamical instability

v" Good agreement between the experimental loss rates and the theoretical growth rates of
dynamical instahility

v Deeply in the dynamically unstable regime appearance of complex structures {loss of
coherence in the atomic sample)

v energetic instability destroys the system on a longer timescale with respect to dynamical
instability (exponential growth)



