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1 Introduction

We study a vortex line in a one-
dimensional optical lattice. Optical lat-
tice splits the Bose-Einstein condensate
into a stack of weakly coupled pan-
cake shaped condensates, each being
pierced by the vortex at some position
(xn, yn). We assume that the lattice po-
tential is deep enough so that the con-
densate wave function is frozen in each
site in the axial direction, but still so
shallow that we are in the superfluid
regime instead of the Mott-insulator
state.
Our aim is to discuss the quantum
properties of the vortex line. Our ap-
proach naturally gives the dispersion
relation for the vortex line eigenmodes
(Kelvin modes [1, 2, 3]), but it also en-
ables us to go further and discuss pos-
sible non-classical states of the vortex
line as well as simple soliton solutions
to the complicated problem of vortex
line dynamics. Kelvin modes have
been recently observed experimentally
in a cigar shaped condensate without
an optical lattice [2].

2 Vortex energy functional

Using a variational wave func-
tion in each site we calculate the
energy of the vortex line as a
function of on-site displacement
from the condensate center as
well the the strength of the in-
ter layer coupling. The qualita-
tive behavior of the energy func-
tional is demonstrated in the fig-
ure.
To the leading order the on-site energy functional is harmonic. However,
there is also a (small) quartic term which can be either positive or neg-
ative depending (among other things) on the rotation frequency of the
trap. This term is always negative when the vortex is locally energetically
stable.

3 Kelvin mode dispersion

It is important to note that vortex x and y coordinates are canonically
conjugate and obey the uncertainty relation

[x̂n, ŷn] = iR2/2N.

By defining creation and annihilation operators in terms of the vortex
positions [1] as x̂n = R/2

√
N

(

v̂†
n + v̂n

)

and ŷn = iR/2
√

N
(

v̂†
n − v̂n

)

(R
is the radial size of the condensate wave function and N is the number
of atoms in each site) the vortex Hamiltonian takes the simple form [4, 5]

H0 =
∑

n

[~ω0 + JV ] v̂†
nv̂n − JV

2

∑

〈n,m〉

v̂†
mv̂n,

where ω0 is the precession frequency of the straight vortex line and JV is
the strength of the coupling between nearest neighbor vortices. This can
be easily diagonalized and we get a Kelvin mode dispersion

~ωK(k) = ~ω0 + JV (1 − cos kd) ,

where d is the lattice spacing. Using a wave function ansatz with a
Gaussian density distribution, we can calculate analytically the quantities
ω0 and JV and relate them to system parameters such as the scattering
length, trap frequencies, and the parameters of the optical lattice.
Note! Experimentally kelvons were observed by studying their coupling
to the quadrupole modes (with m = −2 in particular). Similar setup can
be conveniently studied using our variational approach [4, 5]. This gives
an interaction Hamiltonian of type

(

q̂−2v̂
†
kv̂†

−k + h.c.
)

This is essentially
the squeezing Hamiltonian of quantum optics.

4 Bose-Hubbard model

The Kelvin modes were extracted from the theory which is of second
order in the vortex displacements. However, higher order terms do
exist and the next non-vanishing term is of fourth order in the dis-
placements. Expressing this term in terms of the kelvon operators re-
veals that up to this order the physics of the vortex line is described
by the 1D Bose-Hubbard model. The relevant Hamiltonian is [6, 7]

Ĥ = Ĥ0 +
V0

2

∑

n

v̂†
nv̂†

nv̂nv̂n,

where V0 is the interaction strength. This strength is always negative,
when the vortex is energetically stable. However, for slowly rotating con-
densates it can be positive.

5 Vortex line solitons

At classical level one replaces all the operators v̂n with complex numbers.
In that case the equations of motion is the discretized version of the 1D
Gross-Pitaevskii equation. When gradients are small and interaction is
attractive there is the well known bright soliton solution [7]

vn(t) =

√

N0

2ξ

e−iµt+ikn

cosh [(n − JV kt/2) /ξ]
,

where k is the wavevector and the size of the soliton is ξ = 2JV /|V0|N
lattice spacings. This soliton propagates without changing its shape.
When the soliton does not propage in the lattice direction, it corresponds
to a curved vortex line precessing around the condensate, with a fre-
quency that is somewhat smaller than the precession frequency of the
straight vortex line. Initially straight but displaced vortex line can be
dynamically unstable and collapse into a train of bright solitons. Such a
process is demonstrated in the figure below.

Bright vortex line soliton
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6 Squeezed vortex states

Vortex line solitons are excited states of the vortex line. We now turn to
the equilibrium properties. Since we assume energetically stable vortices
〈v̂n〉 = 0, since otherwise we are dealing with a displaced vortex line.
However, we can identify the order parameter with ∆ = V0〈v̂nv̂n〉 [6].
Expanding the Hamiltonian quadratically around this order parameter,
we get a Hamiltonian which can be diagonalized by means of a Bogoli-
ubov transformation, analogous to the BCS theory. Furthermore, self-
consistency requirement leads to a gap equation.

1

V0
= − 1

Ns

∑

k

1 + 2Nk

2E(k)
, ,

where Nk = 1/(eβE(k) − 1) is the Bose distribution and E(k) =
~
√

ωK(k)2 − |∆|2 is the dispersion of the Bogoliubov quasiparticles. We
then solve the gap equation for the order parameter.

Solution of the gap equation

The result is given in the space spanned by the rotation frequency Ω and
the temperature T . Ωc is the rotation frequency above which the vortex is
locally energetically stable. The order parameter is bounded from above
by the precession frequency ω0 and therefore the result is plotted in terms
of ∆/~ω0.

7 Meaning of squeezing

The complex order parameter ∆ = |∆|eiφ has an interesting physical in-
terpretation in terms of the quantum mechanical uncertainty of the vortex
position. It turns out that in a coordinate system rotated by an angle θ we
have

〈ŷ2
n〉 − 〈x̂2

n〉 = |∆| ×
(

R2 cos (φ − 2θ)

|V0|NNs

)

,

where Ns is the number of lattice sites. Therefore, squeezing will be re-
flected in the squeezing of the vortex position distribution.
When the phase fluctuations are negligible, the uncertainty ellipse of the
vortex position distribution is independent of the layer index n. There-
fore, the measurement of the vortex positions in different layers samples
the same distribution and provides a signature for the expected transi-
tion into a squeezed state. Position distribution can become so strongly
squeezed that it should be observable. Also, the radial condensate expan-
sion will only change the vortex distribution by a scale factor and will not
wash out the effect.

8 Phase fluctuations

In an infinite one-dimensional system phase fluctuations destroy the long-
range order. In the finite system we are considering here, phase fluctua-
tions can only be excited if the temperature is high enough In order to
calculate the energy cost for a phase gradient of the order parameter we
must determine the associated stiffness or superfluid density ρS(T ). Since
the lattice breaks the Galilean invariance this calculation is not entirely
standard. However, after some work the result can be expressed in terms
of the Bogoliubov amplitudes [8, 6].

ρs(T ) =
1

2Nsd

∑

k

{

cos (kd)
[

|uk|2Nk + |vk|2 (Nk + 1)
]

− JV β sin2 (kd) Nk (Nk + 1)
}

.

In an appropriate limit this expression reproduces the well known Lan-
dau result for the superfluid density. Equating the energy cost due to a
2π/Nsd phase gradient with the thermal energy gives us an estimate for
the temperature scale Tφ = JV ρS(T )π2d/NskB of the phase fluctuations.
Our results are summarized in the following phase diagram.

Relative and absolute squeezing of the coordinates

ε =
〈x2〉 − 〈y2〉
〈x2〉 + 〈y2〉

Phasediagram

7 Conclusions

• Bose-Hubbard model for the vortex line

• Soliton solutions in the classical limit

• Squeezing possible in equilibrium

• Future: vortex lattices, new phase transitions, new type of solitons
due to the vortex-vortex interactions?
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