Manipulating Single Atoms

MESUMA 2004 Dresden, 14.10.2004, 09:45

Universität Bonn

D. Meschede

Institut für Angewandte Physik

Overview

- 1. A Deterministic Source of Single Neutral Atoms
- 2. Inverting MRI A Neutral Atom Quantum Register
- 3. Coherent Atom Manipulation
- 4. The Future

Overview

1. A Deterministic Source of Single Neutral Atoms

· .

Optical conveyor belt (single atom tweezer)

Characteristics of the optical dipole potential

...in the dipole trap

...in the dipole trap

dipole trap laser beam

The Single Atom Conveyor Belt

 $v + \Delta v$ \bigwedge \bigwedge V

1 Atom

3 Atoms

Overview

2. Inverting MRI – A Neutral Atom Quantum Register

Overview

2. Inverting MRI – A Neutral Atom Quantum Register

magnetic field gradient dB / dx

- take camera picture
- determine position of all atoms

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$
- apply microwave pulse

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$
- apply microwave pulse
- apply push-out laser

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$
- apply microwave pulse \rightarrow F=3
- apply push-out laser
- take camera picture

some typical pictures

Overview

Driven Rabi-Oscillation

3. Coherent Atom Manipulation $\pi/2$ t 40 population in F=3 [%] 35 -30 -25 -20 -7/1 7 15 -10 -5 -0 -0 20 160 40 60 80 100 120 140 delay [ms]

3. Single Qubit Operations

Controlling neutral atoms:

Table 1:	Measured	hyperfin	e relaxati	on times of atoms in our dipole trap
$T_{\rm relax}$	$U_{ m max}/k$ (ms)	m_F	Value	Limiting mechanism
T_1	1	0, -4	$8.6 \mathrm{~s}$	spontaneous Raman scattering
T_2^*	$0.1 \\ 0.04 \\ 0.1$	$\begin{array}{c} 0 \\ 0 \\ -4 \end{array}$	${3 m ms} \ {19 m ms} \ {270 m \mu s}$	thermal motion, scalar light shift thermal motion, scalar light shift thermal motion, vector light shift
T'_2	$0.1 \\ 0.04 \\ 0.1 \\ 0.1$	$0 \\ 0 \\ -4 \\ -4$	$\begin{array}{c} 34 \ \mathrm{ms} \\ 150 \ \mathrm{ms} \\ 2 \ \mathrm{ms} \end{array}$ $600 \ \mu \mathrm{s}$	beam pointing instability beam pointing instability without gradient: thermal motion, vector light shift with gradient: thermal motion, inhomogeneous magnetic field

Overview

4. The Future – towards Entanglement

We need better position control: Measuring the "house number" of the atom

Rua dos Atomos

We need perfect position control: Measuring the "house number" of the atom

(Limit: 1s int.-time, drifts)

"position control"

- take camera picture
- calculate distance to target position
- take second camera picture

"Conveyor Belt"

Delivery of atoms **ON DEMAND**

1, 2, 3, ... Atoms 0, 1, 2, ... Photons

$$|\bullet\rangle|\bullet\rangle \longrightarrow \frac{1}{\sqrt{2}} (|\bullet\rangle|\bullet\rangle - |\bullet\rangle|\bullet\rangle)$$

Creation of entangled and fully controlled atoms

Adressing individual atoms by adiabatic passage

- 1. Choose center frequency of frequency sweep
- 2. Magnetic field gradient for spatial discrimination

Adiabatic passage by **microwave sweep** 9.2 GHZ (F=4, $m_F=4 \rightarrow F=5$, $m_F=5$) $\rightarrow 2003$

microwave sweep, homogeneous B-field atom at rest → 2004

central detuning δ_{α} (kHz)

microwave constant, inhomogeneous B-field atom pulled through resonance, initially in

Alternative approach: "roller coaster" modes in a bulge on an optical fiber:

high Q-factor, passively stable, small mode volume
 strain tunable, advantageous mode geometry

4. Towards Entanglement – with novel μ -cavities - Describe thickness variation by refractive index gradient. - Solve Eikonal equation in paraxial approximation. Z_{c} $\hat{n}(z)$ $\tilde{\varphi}$ resonance condition: -Z_ $L_{\rm opt}(z_c) = N_{\rm res}\lambda$ FSR ≈ 100 GHz for 2 z_c = 140 μ m and ρ_{max} = 8 µm

Intensity along z (TM mode, m = 84, p = 1, q = 80):

 ρ_{max} = 8 $\mu m,\,\rho_{c}$ = 0.96 ρ_{max} , λ = 852 nm, I = 140 $\mu m,$

The End

Thank you for your attention!

Hard and enthusiastic work by:

D. Schrader, W. Alt, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko,

L. Förster, Y. Louyer, F. Warken, A. Rauschenbeutel

V. Gomer, S. Kuhr, W. Rosenfeld, W. Smith